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Differential Decomposition Patterns of Human Remains in Variable  

Environments of the Midwest 

 

Melissa Ann Pope 

 

ABSTRACT 

Where do people die alone when they remain undiscovered for extended periods 

of time?  Estimation of the postmortem interval (PMI) is critical to reconstructing the 

events surrounding a person’s death and this is an area in which forensic anthropologists 

have played a leading role.  This thesis applied an anthropological framework that takes a 

comprehensive approach to analyzing the demography of unaccompanied deaths, the 

relationships and timing of decomposition in multiple depositional contexts, and created a 

model for the prediction of accumulated degree days (ADD) for bodies within enclosures. 

While there have been extensive experimental and case study reviews on 

decomposition in outdoor environments, very little data exist for enclosed spaces.  A 

retrospective analysis of 2003-2008 Nebraskan autopsy records demonstrates that most 

people dying alone are within their homes.  Of the 87 forensic cases reviewed, 69 

unaccompanied deaths occurred within enclosed environments.  The value of 

retrospective studies in combination to experimental research is that the large number of 

variables that affect decompositional rates may be explored in a natural context.  



  x 

Multivariate models put emphasis on the dynamics of decompositional change and 

comprehensively address death and decomposition within an anthropological framework.  

For enclosed depositions, the PMI ranged from 1 – 66 days (n= 64, =4.84, 

s.d.=9.1037) and the ADD ranged from 0 – 786 ADD (n=64, =67.43, s.d.=120.275).   

Bass’ (1997) model for outdoor surface decay was found to be an adequate predictor of 

the PMI for this sample (r=0.829, n=64, p≤0.000).  A relationship was identified 

between ADD and stages of decomposition (r=0.585, p≤0.000, n=64).  A Nonparametric 

Kruskal-Wallis test revealed that there were significant differences in ADD among stages 

of decay.  These results provided support for the prediction of ADD as a measure of the 

rate of decomposition. 

 Relationships among ADD and multiple intrinsic, extrinsic and epidemiological 

variables were identified and considered for a multiple linear regression model.  

Variables selected by the model included: decomposition odor, use of air 

conditioning/heat, marbling, brain liquefaction, and mummification.  The model was 

found to account for 95.2% of the variation in ADD (Adjusted R2 =0.952; F=40.807, 

df=5, 5 and p≤0.000). 
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Chapter 1 

Introduction 

In U.S. society it is not uncommon for people to die alone without their loved 

ones knowing of the loss.  These cases inevitably lead to questions about the 

circumstances surrounding the death.  Diligent scrutiny and thorough investigation of the 

incidents surrounding the person’s death are necessary to reconstruct the context of the 

death event.  Biological anthropology becomes critical in this process as methods are 

applied within the medicolegal setting to aid in the identification of human remains and 

perimortem trauma, which is relevant for determining the cause and manner of death and 

estimating the time since death.  An accurate estimation of the time frame from when the 

person died until he or she was discovered (the postmortem interval, or PMI) is essential 

to a successful identification and accurate reconstruction of the death event (perimortem 

interval), particularly in cases of homicide where the postmortem interval is critical to 

establishing investigative leads and contributing towards case solvability.   

When an organism dies, its body endures alterations as a result of the various 

processes acting upon it.  Taphonomy may be understood as everything that affects an 

organism from the time of its death to the time that it is discovered, the reconstruction of 

these events, and the reconstruction of the conditions of its death (Haglund and Sorg 

1997c:13).  Determining these forces, their sequence, and effects on the remains is 

fundamental to estimating the time range from when a person died to when he or she was 
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discovered.  Estimation of the postmortem interval is an integral part of reconstructing 

the events surrounding a death (perimortem), and is often studied through examination of 

rates of soft tissue decay and skeletonization (Dirkmaat and Adovasio 1997).  Research 

on this topic is environment-specific, and consequently there are many gaps in what the 

scientific community knows about decomposition and the postmortem interval.  There is 

a great need for research into taphonomy that accounts for environmental variation, as 

research in this area is very limited in scope and geographic origin (i.e., Bass 1997; 

Galloway 1997; Galloway et al. 1989; Komar 1998; Mann et al. 1990; Rodriguez and 

Bass 1985).   

Most data on the use of taphonomy as a measure of the postmortem interval 

comes either from case studies or experimental research on select environments, such as 

Hawaii and Tennessee (i.e., Goff 1991; Micozzi 1986; Rodriguez and Bass 1983,1985; 

Schroeder et al. 2002; Steadman and Worne 2007; Vass et al. 1992; Voss et al. 2007).  

Experimental studies of decomposition primarily have been conducted in an outdoor 

surface environment in few geographical areas, and the timetables produced are not 

necessarily representative of the changes seen in bodies found in differential depositional 

contexts (i.e., Rodriguez and Bass 1983; Vass et al. 1992).  While experimental studies 

are useful for documenting and analyzing the process of decay, their environments are 

artificial and cannot adequately address the range of variation in decomposition that 

anthropologists encounter in casework.  Specifically, there is a paucity of research into 

the factors that affect the rate of decay for bodies that decompose in sheltered 

environments (i.e., Galloway 1997; Galloway et al. 1989; Goff 1991; Schroeder et al. 
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2002).  Moreover, while both case study and experimental research designs are conducive 

for an analysis of decomposition in variable environments, both are characterized by 

small sample sizes, which precludes the use of statistical models with predictive power 

and potential error rates. 

While retrospective studies on human decay have been few in number, they have 

made important contributions to the development of decomposition research (i.e., 

Galloway 1997; Galloway et al. 1989; Goff 1991; Komar 1998; Manhein 1997).  The 

many environmental factors involved in the decomposition process cannot always be 

controlled or even accounted for, and this is especially true for studies that are conducted 

retrospectively.  Yet the benefit of the retrospective study is that the extrinsic or 

environmental factors are representative of what might be encountered in an actual death 

scenario.  The most important environmental factor is the temperature accrued over the 

postmortem interval (accumulated degree days, or ADD).  A retrospective study can 

incorporate local temperature data into a predictive model for decay rates (i.e. Megyesi et 

al. 2005).   

This thesis applied an anthropological framework that takes a comprehensive 

approach to the many variables involved in unaccompanied deaths and decomposition 

rates.  Extrinsic, intrinsic and epidemiological variables were considered.  

Epidemiological variables were those factors that reflect human behavior in some way 

and that were specific to the context of a person’s death, such as manner of death.  

Extrinsic variables were environmental influences, such as temperature.  Intrinsic factors 

were biological characteristics of the decedent, such as decompositional changes or age.  
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This thesis also employed a protocol that operationalized the anthropological framework 

and that could be applied to a variety of settings.  Protocols are essential to scientific 

credibility because in legal cases one must meet evidentiary standards in court by 

demonstrating that methods used were justifiable (Christensen and Crowder 2009; 

Kimmerle and Baraybar 2008; i.e., Daubert v. Merrell Dow Pharmaceuticals, Inc. 1993; 

General Electric Co. v. Joiner 1997; Kumho Tire Co. v. Carmichael 1999).  Therefore, 

accuracy and validity of estimates must be well understood.  The retrospective study 

presented in this thesis used larger sample sizes and took into account the environmental 

limitations of an enclosed location.  A large sample size allowed for quantitative methods 

to be used to make powerful generalizations as a meaningful contribution towards 

decomposition research for enclosed settings.  The purposes of this study were to: 

investigate the demography of unaccompanied deaths; identify and describe 

decomposition within each context; quantify the relationships among extrinsic factors, 

epidemiological variables and decompositional changes into a predictive model for the 

estimation of the time since death for enclosed spaces.   

First, this thesis explored the demography of people who died alone and remained 

undiscovered long enough to undergo decomposition.  To achieve this purpose, this thesis 

tested the following: 

• The relationship between manner of death and sex. 

• The relationship between manner of death and age. 

• The relationship between cause of death and sex. 

• The relationship between age range and cause of death. 
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• The relationship between drug or alcohol related deaths and suicidal or accidental 

and natural deaths.  

• The relationship between traumatic deaths and homicidal and suicidal manners of 

death. 

• Described the age, sex, manners of death and causes of death for near-surface, 

subsurface, aquatic and enclosed contexts. 

• The difference in the postmortem interval among manners of death. 

The second objective of this study was to test decomposition rates that were identified 

within each context by: 

• Testing the reliability of Bass’ model as applied to all contexts combined. 

• Describing the identified factors that influence the rate of decay for near-surface, 

subsurface, aquatic and enclosed contexts.  

• Describing the postmortem interval and accumulated temperature over time for 

remains found in near-surface, subsurface, aquatic and enclosed contexts. 

Finally, for enclosed spaces this thesis quantified decompositional changes and 

investigated the relationships and timing of the many intrinsic, extrinsic and 

epidemiological variables into a predictive model for the estimation of the postmortem 

interval.  Specifically, this analysis: 

• Tested whether bodies were more likely to decompose before discovery in the 

summer and spring than in the fall and winter, and demonstrated that seasons can 

be used to approximate temperature. 
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• Showed that the data reflected variability in decay and retrospective data were 

appropriate for the study of decay.  It was also important to establish that PMI and 

ADD are appropriate measures for the rate of decay. 

o Tested for relationships between the postmortem interval, accumulated 

temperature over time and stages of decomposition created by Bass 

(1997).  This test demonstrated that ADD was an appropriate measure for 

decompositional change. 

o Tested the reliability of Bass’ (1997) model as applied to the enclosed 

setting.  This test showed how well a context-specific standard can be 

applied to novel environments.  This relationship also shows that the 

retrospective data showed variability in decay and were appropriate for the 

study of decomposition. 

o Tested for differences in the postmortem interval and accumulated 

temperature over time among the stages of decay created by Bass (1997).  

Differences in PMI and ADD among decay stages demonstrated that the 

sample possessed variability in decay rates and that ADD were an 

appropriate measure for decomposition.  

o Determined the likelihood of the presence of certain taphonomic effects 

within and after the first week of the postmortem interval.  This helped to 

determine and quantify when individual taphonomic effects were more 

likely to be displayed.  This also suggested that early postmortem changes 

occurred later in the postmortem interval for enclosed depositions, when 
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compared to bodies that decomposed in outdoor Tennessee (Bass 1997; 

Galloway et al. 1989).  

• Determined which intrinsic, extrinsic, burial and epidemiological variables had a 

strong relationship with the postmortem interval and accrued temperature over 

time.  This helped identify variables that could be useful in predicting the accrued 

temperature over time. 

• Built a linear multiple regression that predicted the accrued temperature over time 

for bodies that decomposed within enclosed settings. 

The long-standing focus on taphonomic research in anthropology places forensic 

anthropologists in a unique position to interpret the biological, cultural, behavioral, and 

ecological forces that affect a body after death.  The anthropological framework 

employed in this thesis was instrumental in the development of a decomposition model 

that quantified the rate of decay for the estimation of the postmortem interval and 

produced a measure of standard error.  
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Chapter 2 

Literature Review 

Forensic Taphonomy Defined 

Taphonomy has a long-standing tradition in anthropology, but has traditionally 

fallen within the purviews of archaeology, paleoanthropology, paleontology and 

paleoecology (Behrensmeyer and Hill 1980a; Gifford 1982; Henke and Tattersall 2007; 

Lyman 1994; Lyman 2002).  Haglund and Sorg (1997c:13) define taphonomy as “ the 

study of postmortem processes which affect (1) the preservation, observation, or recovery 

of dead organisms, (2) the reconstruction of their biology or ecology, or (3) the 

reconstruction of the circumstances of their death.”  Paleontologists and 

paleoanthropologists are concerned with taphonomy as it relates to the processes that 

incorporate deceased organisms into the geological record (Grupe 2007; Lyman 1994).  

The goal of paleoecology is to understand past ecosystems by studying fossil 

assemblages as evidence of relationships among extinct faunal populations and between 

past populations and their physical environment (Behrensmeyer and Hill 1980b; Lyman 

1994).  Archaeologists have similarly holistic goals, but their focus is on the interface 

between hominids and their environments (Lyman 1994).  Paleoanthropologists are 

concerned with environmental reconstruction as it pertains to hominid evolution and 

speciation of primates (Grupe 2007; Henke 2007).  Further, Henke (2007:28) asserts that 
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archaeology focuses on cultural remains and is a social science, whereas 

paleoanthropology focuses on biological remains and is a natural science.   

Forensic anthropology has embraced both approaches as a natural extension to the 

forensic tasks of reconstructing the events surrounding a person’s death, and 

distinguishing between perimortem injury and postmortem modification (Haglund and 

Sorg 1997b,c).  Forensic anthropology and bioarchaeology have been referred to as 

“symbiotic and even synergistic (Saul and Saul 2002:72).”  Both disciplines are 

interested in analyzing associations among artifacts and context as a means of inferring 

past events that led to the deposition of a body (Dirkmaat and Adovasio 1997; Scott and 

Connor 1997).  Analogous to bioarchaeologists and paleoanthropologists, forensic 

anthropologists attempt to discover behavior in past events by evaluating taphonomic 

factors and reconstructing the relationship between a body and its surroundings 

(Dirkmaat and Adovasio 1997; Grupe 2007; Scott and Connor 1997; Saul and Saul 

2002).  

Unlike paleoecology or paleoanthropology, forensic taphonomy is most interested 

in discerning phenomena associated with the death event (perimortem interval) from 

those that were incurred during the postmortem period (Haglund and Sorg 1997b).  

Forensic anthropologists want to perform a full reconstruction, which requires knowledge 

on what happened to the person up until the death event, during the death event, and since 

the death event.  Forensic anthropology departs from the archaeological or 

paleoanthropological approach in that its focus tends to encompass the earliest spectrum 

of postmortem changes as well as skeletonization and disarticulation processes (Haglund 
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and Sorg 1997b; Saul and Saul 2002), whereas paleoanthropologists tend to focus on 

skeletal and fossil remains (Grupe 2007).  Even when a body has been skeletonized 

before recovery, understanding the processes of soft tissue decay can aid in interpreting 

the positional context of a set of remains by ruling out taphonomic artifacts (Roksandic 

2002).  Consequently, soft tissue decomposition is an essential consideration in forensic 

taphonomy (Haglund and Sorg 1997b). 

Forensic taphonomy is also unique in that its focus tends to be on the individual, 

rather than on the population or the species (Haglund and Sorg 1997c:14).  Although 

forensic anthropologists, archaeologists, paleoanthropologists and paleontologists are all 

looking at unique specimens that may not represent the population from which they were 

derived, the latter three are interested in reconstructing a community or an ecosystem, 

respectively, whereas forensic anthropologists are primarily concerned with 

reconstructing the events explicitly associated with the decedents’ death event 

(Behrensmeyer and Hill 1980a; Henke 2007; Lyman 1994; Haglund and Sorg 1997c).  

These shifts in attention are reflected in the theories and models constructed to interpret 

taphonomic occurrences. 

This study used an innovative anthropological framework for decomposition 

research (Table 2.1).  The anthropological model is holistic in that the cultural factors of 

who dies alone were investigated in addition to the extrinsic and intrinsic factors related 

to the rate and extent of taphonomic change.  This framework was meaningful because 

the key issue is not only that people die alone, but also that enough time passes as to 

allow decomposition before discovery.  Extrinsic factors are those environmental forces 
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that traditional taphonomists refer to as taphonomic processes, such as changes in 

temperature and access by insects.  In contrast, intrinsic factors are those biochemical 

properties inherent to the individual, such as weight and the degree of biological health.  

Intrinsic factors also encompass the decompositional changes of the body, or what 

taphonomists call taphonomic effects.  While these forces are fundamental to 

demystification of the process of decay, they say nothing of the sociocultural variables 

that presuppose a body remaining undiscovered long enough to necessitate a 

reconstruction of the peri- and postmortem events.   

For this thesis, epidemiological factors were defined as those variables that 

reflected behavior in some way and that were specific to the context of a person’s death, 

such as manner of death.  The epidemiological approach in forensic anthropology 

investigations has previously been applied to trauma analyses in cases of human rights 

violations (Kimmerle and Baraybar 2008) and to populations at risk for remaining 

unidentified in the U.S. (Kimmerle et al. 2009).  Within the context of a human rights 

investigation, “(t)he age and sex distribution of victims, the ratio of wounded to killed, 

patterns among civilians versus soldiers, and the risk to victims provides evidence of the 

type of crime committed (Kimmerle and Baraybar 2008:6).”  For war crimes 

investigations, establishing who the victims were is critical to demonstrating illegal 

action and intent.  This approach was well suited to the study of unaccompanied 

expirations because it accounted for who the decedent was and how the person’s identity 

played a role in the circumstances of his or her death.  The epidemiological approach 

allowed for the relationship between a person’s identity and other considerations related 
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to the nature of hers or his solitary death to be factored into the estimation of time since 

death.  It was herein adopted and applied as it provides explanatory power for who is at 

risk of dying alone and going undiscovered.  On a more practical level, those cultural and 

demographic parameters are valuable to pursuing leads in medicolegal investigations of 

death.  Through the incorporation of extrinsic, intrinsic and cultural factors, this model 

became a way to approach the study of isolated deaths within an anthropological context 

where the biological and social variables worked together, making this a unique and 

comprehensive model for forensic investigations.  
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Table 2.1—Anthropological Model for Decomposition. 
Factors Variables Specific Characteristics 
1. Intrinsic (Biological) • Biological Profile • Age 

• Sex  
• Ancestry 
• Weight 
 

 • Taphonomic Effects • Biochemical Factors (i.e., rigor, 
skin slippage, bloating, marbling) 

• Decomposition Stage (Bass 1997) 
 

 • Cause of Death • Trauma 
• Drugs/Alcohol 
• Natural/Heart Disease 

 
 • Injuries • Presence and degree 

 
2. Extrinsic 

(Environmental) 
• Context • Outdoor surface (i.e., woods, 

roadside) 
• Near/subsurface 
• Submerged (i.e., lake) 

 
 • Time (PMI)   
 • Natural Environment • Temperature (ADD) 

• Humidity 
• Insects 

 
3. Epidemiological 

/Cultural 
• Manner of Death • Natural 

• Accident 
• Homicide  
• Suicide 
• Undetermined 

 
 • Burial Factors • Containers (i.e. blanket, carpet) 

• Deposition Surface 
 • Clothing • Degree of body coverage 
 • Location • Indoor (i.e., hotel, bedroom, 

bathroom) 
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Anthropological Research and the Judicial System 

 A fundamental concern that sets forensic anthropologists apart from 

paleontologists, paleoanthropologists, or other biological anthropologists is the issue of 

whether anthropological evidence will be considered admissible in court.  There are 

several major Supreme Court cases and one rule put into action by Congress that have 

produced a framework for admissibility of expert testimony: Frye v. United States 

(1923), Federal Rules of Evidence (1975), Daubert v. Merrell Dow Pharmaceuticals, Inc. 

(1993), General Electric Co. v. Joiner (1997), Kumho Tire Co. v. Carmichael (1999).   

 The Frye case set the initial precedence for scientific testimony, stating that 

evidence must be generally accepted by the scientific community in order to be 

considered admissible in court (Christensen 2004:427; Christensen and Crowder 

2009:1212; Grivas and Komar 2008:771).  The Federal Rules of Evidence (FRE) was 

later established by Congress to provide governance over evidentiary standards.  

Specifically, FRE Rule 702 concentrated on the issue of expert testimony.  FRE Rule 702 

placed emphasis on qualification of the expert involved.  However, the FRE Rule 702 did 

not address the general acceptance policy stated in Frye, and this resulted in 

inconsistencies in how courts evaluated expert testimonies (Christensen 2004; Grivas and 

Komar 2008).   

In the Daubert trial, the courts determined that the FRE Rule 702 replaced Frye 

for the evaluation of expert evidence (Christensen 2004; Christensen and Crowder 2009; 

Grivas and Komar 2008).  The Daubert case placed responsibility on judges to ensure the 

“relevance and reliability of the scientific testimony (Christensen and Crowder 
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2009:1212).”  The Supreme Court produced five guidelines (The Daubert factors) to 

assist judges in the evaluation of expert testimony, two of which emphasize the need for 

reliable research practices with known or potential error rates (Christensen 2004; 

Christensen and Crowder 2009; Grivas and Komar 2008).  The Joiner case stressed the 

close relationship between methods and conclusions, and placed importance on the need 

for research practices that are reflexive and relevant to the case at hand (Christensen and 

Crowder 2009:1212-1213; Grivas and Komar 2008:772-773).  The Kumho case 

succeeded in clarifying that the Daubert guidelines applied to all expert testimony.  

Collectively, the Supreme Court rulings and the FRE have established the criteria for 

what anthropological (and other) evidence may be admitted into court.  

 The Supreme Court cases and the FRE resulted in an explicit push within the 

forensic anthropology community to quantify anthropological methods and produce 

potential or known error rates that meet the Daubert standards (Christensen 2004; 

Christensen and Crowder 2009; Ross and Kimmerle 2009).  The trend towards quantified 

methods and meeting the standards for judicial admissibility has been reflected in recent 

publications (i.e., Christensen 2005; Kimmerle and Jantz 2008; Konigsberg et al. 2006, 

2008; Rogers 2005; Rogers and Allard 2004; Skinner et al. 2003; Steadman et al. 2006).  

Recently, the National Academy of Sciences submitted a research report (NRC report) to 

the U.S. Department of Justice (National Research Council 2009).  The quality of 

forensic research admitted into legal proceedings was evaluated and recommendations for 

improvements were made (National Research Council 2009).  Under “Recommendation 

3,” the NRC report stated that: 
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 “Research is needed to address issues of accuracy, reliability, and validity 
in the forensic science disciplines…[There is a need for] (t)he 
development and establishment of quantifiable measures of the reliability 
and accuracy of forensic analyses…Studies of the reliability and accuracy 
of forensic techniques should reflect actual practice on realistic case 
scenarios…[Research should focus on] (t)he development of quantifiable 
measures of uncertainty in the conclusions of forensic analyses (National 
Research Council 2009:22-23).” 

 

 

The scrutiny of forensic methods has substantial implications on future cases 

where anthropological evidence may play a role in judicial proceedings.  Estimation of 

the postmortem interval is a vital component of anthropological testimony.  Although 

there has been expression of misgivings towards the ability to accurately quantify such 

complex processes as taphonomy (Grivas and Komar 2008:773-774), it is critical that 

forensic anthropologists are aware of admissibility criteria and that they incorporate 

appropriate research methods to meet the guidelines established by the Supreme Court 

(Christensen 2004; Christensen and Crowder 2009; Kimmerle and Jantz 2008).  

Therefore, theory-driven and quantified decomposition research that uses appropriate 

methods for estimation of the postmortem interval is essential for the growth of forensic 

anthropology.   
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Taphonomic Theory and Methodology 

The Basics 

Before taphonomic theories can be applied to medicolegal death investigation, 

one must comprehend the nature and relationships between the surrounding environment 

and a given set of remains.  Lyman (1994:35) wrote, “(a) first step to model building 

involves understanding the basic structure of taphonomic processes and effects.”  A 

major goal of traditional taphonomic endeavors is to be cognizant of the taphonomic bias 

so that the original environmental context can be better analyzed (Gifford 1982).  In 

addition, taphonomic processes “are essentially ecological in nature and operation” and 

can therefore be informative of the environment (Gifford 1982:485).  For these reasons, 

those who are interested in reconstructing the events prior to, during and after a death 

event must have knowledge of these processes (Gifford 1981; Lyman 1994).   

Lyman writes that “taphonomic histories” begin with the death of an organism 

and are derived from analysis and interpretation of the underlying geological, biological 

and cultural processes that modify a carcass (1994:34).  Because “taphonomic processes 

are both historical and cumulative (Lyman 1994:40),” a good actualistic research strategy 

is to study processes temporally and to establish normal sequences of events (Gifford 

1982).  These processes are dependent on the environmental and cultural ingredients that 

were present when the body was deposited, such as vegetation, climate or hunting 

practices (Grupe 2007; Lyman 1994).  Taphonomic processes interact with a set of 

remains over time and leave effects that can obscure their original context, but they are 

also informative of that original context (Grupe 2007:243; Lyman 1994, 2002).  Lyman 
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(1994:35) wrote: “(t)he objects in a site, their frequencies, physical attributes, spatial loci 

and associations, and geological and cultural associations are all that are observable in the 

fossil record.”   

The nature of paleoecological work is to use fossils to understand the 

interworking of a past ecosystem and to place a certain ecological setting within the 

broader context of evolution (Behrensmeyer and Hill 1980a; Gifford 1982; Grupe 2007; 

Lyman 1994).  Unlike ecologists who can observe current phenomena, paleoecologists 

cannot use the same methods for deriving information that an ecologist would use.  The 

process of fossilization occurs under very unique conditions, and consequently fossils do 

not represent populations (Behrensmeyer and Hill 1980b; Grupe 2007).  Rather, fossils 

are small, isolated clues that can only be interpreted by tracing the specimen back 

through time.  Hence, paleoecologists often invoke the methodologies of 

uniformitarianism and actualism (Gifford 1982; Lyman 1994).   

 

Traditional Methodology 

Uniformitarianism is an overarching principle that was founded within geology 

and has been largely attributed to the work of Charles Lyell, although the concept has 

changed over time (Gould 1965, 1979; Lyman 1994).  Gould (1965, 1979) has taken this 

umbrella term and dissected out its multiple meanings, arguing that uniformitarianism has 

two parts: the theory and the methodology (also see Lyman 1994:47).   

The theory that is specific to geology is coined “substantive uniformitarianism,” 

and consists of: “gradualism,” where processes at work have been the same in rate over 
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time and accumulate to produce large effects; and “nonprogression,” where change 

occurs cyclically, so that over time the earth remains the same (Gould 1965, 1979:126-

127).  Lyman equates substantive principles with “configurational properties, because 

they are context specific, are historical and mutable (1994:52).”  Gould argues that 

substantive uniformitarianism “has not withstood the test of new data” and is 

“transformed into an a priori assumption, stifling to the formulation of new hypotheses 

which may better explain certain data (Gould 1965:226).”  Therefore, for the purpose of 

this discussion, substantive uniformitarianism is only of historical interest in its giving 

rise to methodological uniformitarianism, and for its occasional conflation with 

methodological uniformitarianism.     

Methodological uniformitarianism is a scientific approach that was derived from 

geology but is not contained to it, and also consists of two parts (Gould 1965:226, 1979).   

 

First, there is “uniformity of law…natural laws are invariant in space and 
time (Gould 1979:123-124).  Lyman equates this with “immanent 
properties…those immutable physical and chemical reactions that occur 
with predictable results regardless of spatiotemporal context (1994:52).”  
Secondly, there is “uniformity of process (actualism)…ascribe past results 
to causes now in operation (Gould 1979:125-126).”   
 

Methodological uniformitarianism is useful for historical sciences and has been 

adopted by paleoecology and archaeology because the past cannot be empirically 

observed (Lyman 1994).  One can view modern effects and infer a relationship to modern 

processes (induction), then extend this inference so that similar past effects may be 

explained by similar processes that were at work in the past and are currently at work 
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today (Gould 1979).  Methodological uniformitarianism is thus analogous to actualism, 

where actualism is the operation of analyzing evidence that currently exists (i.e., a fossil) 

and looking at processes that currently occur, and using them to infer information about 

the taphonomic history of that evidence (Gifford 1982; Gould 1965, 1979; Lyman 1994).  

Consequently, methodological uniformitarianism or actualism has become an important 

procedure in archaeological and paleoecological taphonomy.  This is because actualism 

allows taphonomic artifacts from the past to be interpreted as results of processes that are 

currently occurring (Gifford 1982; Gould 1965, 1979; Lyman 1994).  Gifford (1982:476) 

writes: “(f)or taphonomy, as in other branches of historical science, study of the present is 

the key to investigation of the past.”  The anthropological model and protocol used for 

this thesis was designed to operationalize actualistic methods.  The protocol is designed 

for data collection on the context of discovery, which allows for inferences to be made on 

the PMI and perimortem circumstances. 

 

Theoretical and Methodological Problems 

Paleoecologists rely loosely on ecological theories to explain fossil assemblages 

(Lyman 1994).  However, within paleoecological studies, there has been no unifying 

theory or method to guide taphonomic research questions, and a general lack of 

theoretical discussions within the field (Gifford 1982).  For anthropological estimations 

to be admissible under the Daubert standard, methods must be theory guided (Rogers 

2005:494).  However, forensic taphonomic research has also been notoriously 

idiosyncratic and lacking in covert use of theory.  Unsurprisingly, there has been limited 
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interaction between traditional taphonomic studies and forensic anthropology (Haglund 

and Sorg 1997b).  

Perhaps the restricted interface between traditional taphonomy and forensic 

anthropology is due in part to forensic anthropology’s emergence from medicolegal 

necessity.  Like other realms of forensic science, forensic taphonomy is embedded within 

a medicolegal context, has a practical conception, and is inherently an applied science 

(Haglund and Sorg 1997b; Nordby 2002; Roksandic 2002; Ross and Kimmerle 2009).  It 

is conceivable that the practical realm in which forensic taphonomy is seated has 

inhibited the building of theoretical paradigms and application of rigorous research 

strategies (Ross and Kimmerle 2009:479-480).  The medicolegal focus from which it was 

founded creates a unique standpoint that resonates as practical application in forensic 

anthropologists’ approach to taphonomy, law, forensic science, trauma and other 

anthropological evidence.   

Nordby (2002) has likened the theoretical development of forensic taphonomy 

to that of early developments in medicine and pathology.  Both fields of study arose from 

practical concerns and were initially devoid of theory.  Like the processes under 

investigation in taphonomy, factors involved in disease processes have complex 

interfaces that cannot fit neatly within one theory or model.  Rather, multiple theories and 

models must be invoked in unique combinations to explain various pathological (or 

taphonomic) phenomena (Nordby 2002).  Nordby (2002:39) deliberates: “(w)e may not 

yet have firmly established the science of forensic taphonomy, but it does not follow that 

it is unscientific—its developing methods and history parallel those of now recognized 
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and trivially accepted theories of disease.”  Current models in forensic taphonomy are 

highly idiosyncratic and are not reliable when applied to new cases but these case-

specific models are a necessary initial step in the development of a scientific discipline. 

Lyman (1994:463) wonders if it is even possible to create a broad-ranging theory 

for taphonomy.  He contrasts the explanatory power of neo-Darwinian theories with that 

of taphonomic theories.  Lyman points out that within neo-Darwinian theories a lineage 

finds “ultimate causal explanation,” whereas taphonomic studies remain particularistic 

and atheoretical (1994:464).  Many cause and effect “laws” of taphonomy have been 

established through methodological uniformitarianism or actualistic research, yet Lyman 

contends that they are ahistorical and “do little to explain the fossil record…in the sense 

of helping us understand why taphonomic processes occur in the first place or why 

taphonomic processes operate the way and in the temporal order that they do (Lyman 

1994:464).”   

Similarly, Gifford (1982) attributes this theory deficiency to a general lack of 

establishing goals of what can be learned with actualistic research, and in establishing 

how uniformitarianism and actualism can properly direct research.  Uniformitarian 

assumptions have been under criticism within the field of paleoecology.  This is partly 

because the past cannot be observed to empirically determine if the same processes are at 

work, and partly because it does not allow room for potential past processes that no 

longer exist, which often leads to the invocation of “ad hoc arguments (Gifford 1982; 

Lyman 1994:51).”  Proponents for the method argue, “(t)he occasional necessity of 
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invoking ad hoc arguments is due largely to incomplete knowledge of present processes, 

not some internal weakness of the method (Lyman 1994:51).”   

Lyman (1994) notes that criticisms of uniformitarianism often stem from 

confusion between substantive and methodological uniformitarianism, where the former 

is context-specific.  Specifically, when human and animal behaviors or culture are 

considered as variables that affect the deposition of an organism, a uniformitarian 

approach can be problematic in providing explanations (Gifford 1982; Lyman 1994).  

One cannot assume that behaviors and cultural processes have remained the same over 

time.  In addition, causal linkages between an effect and a process are not always 

substantiated (Gifford 1982; Lyman 1994).  Uniform principles are often invoked to 

establish inferences that may not have much supporting data and can border on 

speculation (Gifford 1982).  

Another component of the problem is the myriad patterns and variables that 

make up the multivariate nature of taphonomic analyses (Lyman 1994).  The multivariate 

essence of taphonomic data has made it difficult to create models that may be applied to 

new cases and has also hampered the building of theory (Lyman 1994; Dirkmaat and 

Adovasio 2002; Nordby 2002), and yet “(v)ariability in the decay rate of the human body 

is the rule (Mann et al. 1990:110).”  Factors that alter a carcass are specific to any given 

environment.  They influence and alter one another, which ultimately produces a 

distinctive effect on the remains (Mann et al. 1990; Lyman 1994; Sorg and Haglund 

2002).  The combined uniqueness of the remains, their context and the natural processes 

at work create an inimitable ecosystem, with the carcass at the heart of it.  What makes 
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the decomposition setting and process so idiosyncratic for each case are not only those 

intrinsic and extrinsic variables, but also the epidemiological and cultural variation.  The 

epidemiological elements are the driving force for why a set of remains ended up 

undiscovered within a particular setting and therefore also need to be accounted for.  

The extrinsic, intrinsic and epidemiological factors encompass a broad array of scientific 

domains.  Consequently, the forensic sciences are necessarily multidisciplinary.  Each 

discipline carries it’s own set of theories, assumptions, and explanatory models, to be 

variably applied, and dependent on the context of the taphonomic setting (Nordby 2002).  

The many variables and frameworks from within multiple disciplines have in the past 

made it difficult for forensic taphonomists to move beyond the descriptive case study and 

towards the creation of quantitative models with the power to make robust 

generalizations (Ross and Kimmerle 2009).    

 

Nordby (2002:32) contends that: “(f)orensic taphonomy may at this time 
exist as a collection of hodge-podge theories, pasted together from many 
sciences, mixed with archaeological practices, and loosely accumulated to 
defend case-specific explanations and guide the discovery, and eventual 
explanation of specific decomposing human (or other) remains.”   

 

The constituents that contribute to decomposition are multivariate and the study of these 

processes is necessarily multidisciplinary by nature (Lyman 1994; Nordby 2002:32).  

Forensic anthropologists can move past idiosyncratic explanations by utilizing 

multivariate quantitative models that allow for case-by-case variation, but still hold 

predictive power.    
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Present and Future Epistemological Directions 

What direction should forensic taphonomists pursue to develop a stronger 

theoretical foundation?  Lyman (1994) and others have suggested ecological theory as a 

promising gateway towards a more sound theoretical development in modern forensic 

taphonomic research (refer to Haglund and Sorg 1997a,c, 2002a).  The ecological 

approach is suited to forensic taphonomic endeavors because it enables consideration of 

the interaction between a body and its surroundings, which facilitates the process of 

reconstructing a death event.  By definition, ecology is concerned with “the interactions 

that determine the distribution and abundance of organisms (Krebs 1972:4).”  With this 

definition, Krebs (1972) intended to stress the importance of relationships among 

elements that compose an ecosystem, and that affect species’ distributions and 

abundances.   

Whereas the paleoanthropologist or paleoecologist may take a perspective that 

encompasses an entire ecosystem, forensic taphonomy is exclusively concerned with the 

environment’s interactions with the deceased human body.  This narrowed and 

anthropocentric emphasis on one organism over all others has been rightly noted as 

arbitrary in focus (Sorg and Haglund 2002), but is well suited to the purpose of inquiry.  

Therefore, the unit of analysis in forensic taphonomy is the decedent and the ambient 

micro-ecosystem or the environment of deposition, where environment is defined as any 

component of the ecosystem that interacts with the carrion in question.  From an 

ecological perspective, this means that forensic anthropologists are focused on the 

organism level, just below the population level (Krebs 1972).  Forensic taphonomists 
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may also be interested in analysis at the community level, which is just below the 

ecosystem level (Krebs 1972:10), but the community is redefined as any species that have 

interactions with the carrion.   

When considering human decay, the various levels of analysis and complexity 

within an ecosystem become important because “cadaver decomposition is likely an 

important ecosystem process (Carter et al. 2007:13).”  The death of an organism can be 

framed in terms of the biogeochemical cycle, where in life, the organism takes in 

nutrients from the environment and in death they are concurrently returned (Lyman 

1994).  Through the lens of ecology, the body is viewed as a “centerpiece of a newly 

emerging microenvironment (Sorg and Haglund 2002:5).”  The body is broken down 

through autolysis, putrefaction and anthropophagy and nitrogen and nutrients surge back 

into the surrounding area, creating a “cadaver decomposition island (Carter et al. 

2007:12).”  The remains continue to interact with their environment through chemical, 

biological and physical processes that bring nutrients to the newly emerging ecosystem, 

and over time the two coalesce (Haglund and Sorg 1997c; Mann et al. 1990; Sorg and 

Haglund 2002).  While this process is not unique to human decomposition, the emphasis 

for anthropologists is solely on human bodies and their surroundings.   

Circulatory stasis creates an anaerobic environment that is conducive to expansion 

of many microorganisms that normally inhabit the gastrointestinal tract or the respiratory 

system (Carter et al. 2007; Clark et al. 1997).  These nutrients permeate and fertilize the 

soil, are harnessed by bacteria, plants, insects and scavengers, and ultimately make the 

immediate environment more heterogeneous (Carter et al. 2007).  Sorg and Haglund 
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excellently characterize the fluid nature of decomposition, where “the boundaries of the 

body diverge as decomposing materials penetrate the ground, are carried away by moving 

water, are digested…or are volatilized to the air or water (2002:5; see also Butera et al. 

2007).”  Ultimately, the cadaver decomposition island makes the surrounding area more 

fertile and the ecological community more diverse (Carter et al. 2007).   

Ecological theory provides strong concepts that link the extrinsic environmental 

setting to the intrinsic changes of the body, but the ways in which these are synthesized 

needs to follow scientific induction without speculation.  To do so, Gifford (1982) 

essentially makes an argument for practicing sound actualistic science.  She suggests that 

applying uniform assumptions and creating analogues should be “equally conscious and 

cautious, and that the search for meaning in the archaeological [or forensically 

significant] record begins with well-conceived and well-executed observations of the 

contemporary world (1982:525).”   

In General Electric Co. v. Joiner (1997), the Supreme Court determined that court 

admissible research must have methods and conclusions that are fundamentally linked, 

thereby placing emphasis on the importance of rigorous research practices (Christensen 

and Crowder 2009:1212; Grivas and Komar 2008:772).  Gifford’s (1982) call for 

establishing causal links resonates well with the forensic community.  Uniformitarianism 

and actualism are useful postulations for the forensic anthropologist and their utility is 

enhanced by the relatively recent deposition of forensically significant remains.  The 

issue of time that so burdens the paleoecologist’s inferences does not present the same 

problems to a forensic study.  Cases that take forensic precedence were likely subjected 
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to processes during the postmortem interval that still occur during the time of 

investigation.  The medicolegal context necessitates that forensic anthropologists be 

especially prepared to demonstrate causal links between the facts they analyze and the 

inferences they derive (Christensen and Crowder 2009; Grivas and Komar 2008).  

Uniformitarian principles and actualistic research can facilitate the formation of these 

relationships.   

While actualistic research can help establish cause and effect relationships among 

taphonomic variables, the infinite number of factors that can build on or disguise one 

another makes it difficult to generate comparable studies (Lyman 1994).  Grivas and 

Komar expressed concern towards quantification of taphonomic changes precisely 

because there is “infinite variation” associated with the involved processes (2008:773-

774).  First, more research needs to be done on the potential effects of taphonomic 

processes “but also the dynamics of the actual events that produce them (Gifford 

1982:493).”  Specifically, there needs to be more focus on the range of variation that 

taphonomic processes can produce on a body within specific contexts.  If the context is 

controlled for, the interplay of extrinsic variables can be accounted for in part.  

Controlling for environmental context can be accomplished by doing more comparisons 

among forensic cases through retrospective studies.  

Researchers must also strive to substantiate a causal linkage between extrinsic 

forces and their intrinsic effects (Gifford 1982; Gould 1965).  Gifford (1982:493) points 

out that “the search for regular and ecologically relevant linkages between static 

attributes of the fossil record and their dynamic causes and associations is the key to 
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progress in understanding the prehistoric evidence.”  To assume uniformity of a process, 

there should be several lines of evidence that provide a good reason to do so (Gifford 

1982).  Therefore, actualism is an important methodological stance within forensic 

anthropology, as it is within many other branches of science.   

Utilization of actualistic research can be seen as reflected in the forensic 

taphonomy literature.  The strong need to establish causal links for forensic analysis has 

led to countless studies on the taphonomic processes that may affect a body after death 

(refer to Haglund and Sorg 1997, 2002a).  To reconcile the many segmented 

contributions to taphonomic research (i.e., case, retrospective, experimental and 

environmentally specific studies), scientists must work to collect more data on 

decomposition that can be compared to the existing literature in a comprehensive manner 

(Dirkmaat and Adovasio 1997).  Additionally, there needs to be a greater reliance on 

quantitative methods, as they can be used to construct more concrete inferences than 

qualitative descriptions alone (Kimmerle and Jantz 2008; Ross and Kimmerle 2009).  

Quantified anthropological methods with known or potential error rates are more likely to 

satisfy the reliability factor of the Daubert standard (Christensen 2004; Christensen and 

Crowder 2009).  Lyman (1994) notes that analyses of covariance within dimensions of 

taphonomic research will help in making theoretical generalizations.  Multivariate 

statistical methods are needed so that all factors identified as having an important 

influence on the rate of decay can be accounted for. 

Rigorous actualistic investigation in conjunction with multivariate statistical 

analyses will quantify a model’s predictive value and potential error rate as well as 
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produce conclusions that can be tested for reliability within the forensic community, 

which is critical for admissibility in court (Ross and Kimmerle 2009).   

 

Kimmerle and Jantz (2008:522) said, “(t)he use of scientific methodology 
as evidence in criminal courts typically requires that it is accepted by the 
general scientific community and that probability levels or error estimates 
are provided when appropriate.”   
 
 

In other words, methods used for determining the circumstances surrounding a 

death will only withstand scrutiny in a court of law if they have been empirically 

validated (Christensen 2004; Christensen and Crowder 2009; for examples, refer to 

Kimmerle and Jantz 2008; Love and Marks 2003).  The applicability of anthropological 

methods to forensic cases therefore depends on the generation and professional 

publication of new methodological research (Kimmerle and Jantz 2008:522). 

More research is also needed on the multivariate processes that lead to 

undiscovered victim remains and that affect differential decomposition.  The 

incorporation of ecological theory and uniformitarian methodology is a step in the right 

direction, but this approach only accounts for a portion of taphonomic variation.  

Ecological theory is applicable to extrinsic natural processes such as wind erosion or 

climatic cycles and even some intrinsic transformations such as cellular death.  Yet, 

ecological theory cannot account for human behavior or cultural processes that have 

caused a victim to remain undiscovered and that may have traversed the remains during 

the postmortem interval.   
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What sets forensic anthropologists apart from pathologists or traditional 

taphonomists is their distinct ability to embrace a holistic approach to death investigation.  

Forensic anthropologists are in a unique position to incorporate all variables and 

adequately contextualize the taphonomic findings within the whole case surrounding 

them.  An anthropological model that incorporates an epidemiological framework 

addresses the specific questions asked in a death investigation: what is the time since 

death, the victim’s identity, the cause of death, and the manner of death?   

This study aimed to adapt and incorporate Kimmerle and Baraybar’s (2008) 

epidemiological model with the currently employed ecological focus for forensic research 

on human decomposition.  This intricate approach comprehensively encompassed the 

many biological, cultural, epidemiological and environmental aspects of investigating 

unaccompanied deaths and their subsequent postmortem intervals.  This new model as 

applied to forensic investigations of solitary deaths will pave the way for research that 

yields a more holistic understanding of people who die alone.   Further, the 

anthropological model will move this body of research beyond the idiosyncratic case 

study and towards more robust analyses with meaningful results both to the forensic 

world as well as the anthropological community.   

This research empirically identified the multitude of extrinsic factors that 

influence decompositional change as well as how they intrinsically transform the remains 

by critically evaluating the popularly employed model created by William Bass (1997) as 

it is applied to variable settings in Nebraska.  This study revealed demographic 

information about who it is that dies alone and goes undiscovered for variable amounts of 
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time, which is valuable for identifying behavioral and demographic patterns that are 

indicative of those whose lives and deaths have become disjointed from society.  Through 

the incorporation of cultural, extrinsic and intrinsic components of solitary deaths, this 

research created a predictive model for the postmortem interval that may be applied to a 

variety of enclosed settings, and it is hoped that this model will create a bridge among 

many seemingly unique scenarios to produce something with predictive and explanatory 

value.   

 

Intrinsic Transformations 

Death may be seen as a process that begins with cessation of the heart (Gill-King 

1997).  When the heart stops pumping, blood no longer carries oxygen to the body’s cells 

and they become deprived of oxygen (anoxia), which sets in motion an array of processes 

that create decompositional change (Clark et al. 1997; Gill-King 1997).  Although timing 

of these processes is highly dependent on environmental factors, they unfold in a logical 

order that make them excellent indicators for the estimation of time since death during 

the early postmortem interval, and serve as a “postmortem clock (Gill-King 1997; Perper 

2006:94).”  Anthropologists attempt to study these intrinsic changes by constructing 

stages that a body transcends as it passes from being recently deceased to being 

completely skeletonized.  The processes in which the anthropologist is most concerned 

are those “physicochemical changes” that are observable and that begin to occur soon 

after death, such as: ocular alterations, livor mortis, rigor mortis, autolysis and 

putrefaction (Perper 2006:94). 
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Livor Mortis 

 Livor mortis (postmortem hypostasis) is the pooling of the blood in inferior 

portions of the body as a result of circulatory stasis and gravity (Clark et al. 1997; Perper 

2006).  This phenomenon may be visible as early as fifteen to twenty minutes after death 

but is more commonly seen after about two hours.  As the blood continues to settle, the 

lividity becomes more conspicuous and eventually turns from red to purple (Clark et al. 

1997; Perper 2006).  The purple discoloration is a result of oxygen no longer binding 

with hemoglobin on red blood cells, which produces a purple pigment called 

deoxyhemoglobin (Clark et al. 1997).   

Initially, the lividity is considered unfixed, meaning that blood is still able to 

move within the capillaries.  When pressure is exerted on livid skin, the blood is pushed 

out and leaves a whitened area, an occurrence known as blanching.  As the body 

continues to acclimate to the ambient temperature (algor mortis), the blood congeals and 

diffuses into surrounding tissues, and the dermal fat surrounding the capillaries solidify 

(Clark et al. 1997; Perper 2006).  These changes make the lividity “fixed,” where blood 

will not migrate when pressure is exerted on the affected areas.  Fixation usually occurs 

approximately four to six hours (Clark et al. 1997), or eight to twelve hours postmortem 

(Perper 2006).   

 

Autolysis 

Living cells are constantly at work to maintain biological order, from the cell to 

the organismal level (Alberts et al. 1998).  This normal human biology can only function 
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within fairly narrow limits of temperature and pH (Clark et al. 1997; Gill-King 1997).  

Integral to cellular activity is the process of central metabolism, where cells procure 

energy from carbohydrates and other environmental compounds and use it to drive 

normal cellular processes, such as cell products, maintenance, and division (biosynthesis; 

Alberts et al. 1998; Gill-King 1997).  Within each cell, energy is stored in the form of 

adenosine triphosphate (ATP) to be used when needed.  Hydrolytic enzymes (hydrolases) 

normally function to break down carbohydrates and proteins for ATP energy production 

(Clark et al. 1997).  Hydrolases are contained within “membranous sacs” called 

lysosomes, which are responsible for “intracellular digestion” and work best within acidic 

environments (Alberts et al. 1998:476).  

Once the heart stops pumping, the organism’s cells are denied oxygen and they 

can no longer maintain biosynthesis (Gill-King 1997).  As a last-ditch effort of survival, 

the cells switch from central (oxidized) metabolism to a fermentative (anaerobic) 

metabolic pathway, which produces abundant quantities of lactic acid and consequently 

lowers the cells’ pH (Gill-King 1997).  The anaerobic, fermentative pathway does create 

some ATP energy, but ultimately it is not enough to sustain cellular processes and they 

enter into cell death (Gill-King 1997).   

The breakdown of body tissues caused by digestive enzymes is known as 

autolysis (Clark et al. 1997; Gill-King 1997; Perper 2006).  The body’s cells are no 

longer able to engage in maintenance activities (biosynthesis) and the membranes of 

lysosomes begin to deteriorate (Clark et al. 1997; Gill-King 1997).  The digestive 

enzymes are released from membrane-bound organelles into the cytoplasm, where they 
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destroy the cellular membrane (lysis) and are liberated into the body (Clark et al. 1997; 

Gill-King 1997).  The dissolution of cell membranes causes the cells to separate from one 

another, which at the macroscopic level is known as “tissue necrosis (Gill-King 

1997:96).”   

The rate at which catalytic enzymes metabolize is dependent on temperature, 

where an increase in heat will increase their work speed, until they reach a temperature 

that causes denaturation (60˚C, 140˚F; Clark et al. 1997; Gill-King 1997).  Therefore, 

“autolysis will be accelerated by antemortem fever, exertion, or a high ambient 

temperature (Clark et al. 1997:153).”  Autolysis commences approximately four minutes 

after death (Vass 2001).  However, the time that autolysis begins varies among cell, 

tissue and organ types (Clark et al. 1997).  Autolysis first starts in cells that are highly 

metabolically active, and hence possess more lysosomes and hydrolytic enzymes for the 

production of ATP energy, biosynthesis or membrane transport (Clark et al. 1997; Gill-

King 1997).   

As a result of variable timing in the onset of autolysis among cell types, there is a 

common order of the intrinsic process of tissue decomposition and these changes may be 

grossly seen approximately forty-eight hours postmortem (Clark et al. 1997; Gill-King 

1997).  Internal organs that are affected by autolysis take on a “doughy consistency 

(Clark et al. 1997:154).”  The first organs to undergo decompositional change are the: 

intestines, stomach, pancreas, liver, heart, blood and circulation, due to their high 

quantities of hydrolytic enzymes (Gill-King 1997:97).  Secondly, the lungs and air 

passages degrade, followed by the kidneys and bladder.  The brain and related nervous 
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tissues are highly engaged in metabolism and tend to decompose rather quickly.  The 

brain’s high concentration of hydrolytic enzymes cause cell lysis, which results in 

liquefaction (“liquefactive necrosis”; Gill-King 1997:97).  The skeletal muscles are often 

the next tissue group to decompose.  The hydrolytic enzymes of muscle tissue tend to 

denature, which results in “coagulative necrosis (Gill-King 1997:97).”  Integument and 

connective tissues are composed of collagen, a durable organic material, and hence these 

tissues often survive the longest (Gill-King 1997:98).   

As the cells degrade, carbon dioxide is released and accumulates in the blood, 

which makes the pH decline at the tissue level so that the body becomes more acidic 

(Clark et al. 1997; Gill-King 1997).  The blood’s lowered pH triggers coagulation that 

results in postmortem blood clotting within the body’s arteries and veins (Clark et al. 

1997).  As the blood’s pH continues to decline, the clots eventually reliquify.  This 

process tends to begin and end at approximately the same time as rigor mortis (described 

below), although they are independent of one another.   

 The termination of circulation deprives red blood cells of oxygen, and 

hemoglobin and oxygen are no longer able to bind, which creates deoxyhemoglobin and 

makes the blood purple (Clark et al. 1997).  Hemolysis (bursting of red blood cells) 

occurs within blood vessels and they become discolored.  This staining is apparent in the 

superficial veins and arteries, which trace bluish lines across the body’s skin, an artifact 

known as marbling. 

 Skin slippage is an intrinsic phenomenon caused by cell lysis near the interface of 

the dermis and epidermis (Clark et al. 1997).  The release of hydrolytic enzymes causes 
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the dermis to separate from the epidermis so that the latter peels and can be wiped off in a 

thin layer.  Fluids produced as a byproduct of autolysis sometimes accumulate between 

the separated tissues and form what are known as postmortem bullae, or fluid-filled 

bubbles that form between the epidermis and the dermis  (Clark et al. 1997).  The 

loosening of the epidermis also frees nails and hair from their respective origins, and they 

are likely to loosen or fall out. 

 

Rigor Mortis 

 Rigor mortis is the stiffening of all the muscles in the body as a result of chemical 

changes produced by autolytic processes (Clark et al. 1997; Gill-King 1997).  The 

sarcoplasmic reticulum is a specialized type of endoplasmic reticulum organelle within 

muscle cells that contain large stores of calcium (Junqueira and Carneiro 2005).  

Sarcomeres are structures within the myofibrils of muscle cells that are joined 

longitudinally and span the length of a muscle (Gill-King 1997; Junqueira and Carneiro 

2005).  Sarcomeres contain actin and myosin, the proteins responsible for muscle cell 

contraction.  In a living body, the sarcoplasmic reticulum releases calcium into the 

sarcomeres (Gill-King 1997; Junqueira and Carneiro 2005).  Calcium frees the binding 

sites on the actin filaments, and actin and myosin bind via “locking chemical bridges 

(Gill-King 1997; Perper 2006:102).”  These bridges slide the actin across the myosin 

filament within each sarcomere and produce a muscle contraction (Gill-King 1997; 

Junqueira and Carneiro 2005).  ATP energy is used to pump the calcium back into the 
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sarcoplasmic reticulum, which separates the actin-myosin bond and causes the muscle to 

relax (Gill-King 1997).   

 In a deceased human, autolytic release of enzymes destroys the membrane of the 

sarcoplasmic reticulum and releases calcium into the sarcomere (Gill-King 1997).  The 

same process that produces muscle contraction occurs by default in the autolytic 

postmortem phase.  However, there is no ATP energy to pump the calcium back into the 

sarcoplasmic reticulum, and hence the contraction persists as rigor mortis (Gill-King 

1997).  Rigor is ultimately ended by the autolytic release of digestive enzymes within 

muscle cells (cathepsins).  Once released, these enzymes separate the actin from the 

sarcomere, which allows the muscles to break rigor and relax (Gill-King 1997).    

 Perper (2006:101) states, “Rigor mortis develops and disappears at a similar rate 

in all muscles.”  Therefore, smaller muscles will become rigid and lose rigidity sooner 

than larger muscles, and for this reason it is often first seen in the facial and the masseter 

muscles (Clark et al. 1997; Perper 2006).  There is some variability in reports of when 

rigor typically develops and disappears.  Perper divulges that rigor may begin as early as 

a half hour to an hour after death, “increases progressively to a maximum within twelve 

hours, remains for about ten or twelve hours and then progressively disappears within the 

following twelve hours (2006:101).”  Clark et al. (1997) report that rigor begins within 

two to three hours postmortem, is fully set after twenty-four hours, and dissolves by 

forty-eight hours.  Gill-King (1997) reports a somewhat later time frame; rigor develops 

within four to six hours and disappears within twenty-four to forty-eight hours.  

Comprehensively, these reports suggest that rigor may develop within one to six hours 
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postmortem, become fully set within twelve to twenty-four hours, and disappears within 

twenty-four to forty-eight hours.   

 Muscle mass, temperature and metabolic status are important variables that affect 

the length of time needed to develop and dissolve rigor mortis (Clark et al. 1997; Gill-

King 1997; Perper 2006).  High external temperatures, metabolism, fever, and low 

muscle mass are associated with increased rates of rigor mortis.  If the ambient 

temperature is very warm, rigor might begin and end within nine to twelve hours (Perper 

2006:102).  Characteristics intrinsic to the individual will influence the timing of rigor.  

Bodies with more muscle mass will tend to have more glycogen to be converted to lactic 

acid via fermentative pathways, and the lactic acid will lower the muscle’s pH and 

accelerate the process of membrane deterioration (Gill-King 1997).  Due to infants’ and 

the elderly’s low muscle mass, they may not fully develop rigor or it may develop and 

resolve quickly (Gill-King 1997; Perper 2006).  In addition, large body surface area will 

enable the body to cool more quickly, and slow the rate of rigor.  

 

Putrefaction 

Putrefaction is the intrinsic dissolution of the body caused by extrinsic bacteria 

and other microorganisms normally residing in the body (Perper 2006).  This process 

may be accelerated by heat, sepsis, diabetes, fever or a large amount of adipose tissue 

(Perper 2006).  Sepsis introduces more microorganisms than what would be found in a 

healthy body.  The accelerated rate of putrefaction in persons with diabetes appears to be 
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related to their higher levels of sugar, which may serve as a source of nutrients for 

anaerobes (Perper 2006).   

When cells are no longer receiving oxygen from red blood cells, they switch to 

fermentative metabolic pathways, which creates an anaerobic atmosphere that is 

conducive to the proliferation of bacteria in the large intestine (Gill-King 1997).  

Somewhere between 96 and 99% of colonic bacteria are anaerobic.  Following the 

autolytic release of carbohydrates, protein and lipids, bacteria begin to break these 

organic structures down, which creates macroscopic putrefactive changes (Clark et al. 

1997; Gill-King 1997).  The bacteria engage in “bacterial carbohydrate fermentation” and 

expel various gases and organic acids that largely contribute to the decline in the body’s 

pH after death (Gill-King 1997:99).  

Clark et al. (1997:155) state: “The rapid production and accumulation of gases 

causes both physical and chemical changes in the decomposing body which are 

superimposed on the autolytic processes described above.”  The gases produced 

accumulate within the bowel as well as between tissue layers via the circulatory system, 

and produce a postmortem artifact called bloating (Gill-King 1997).  Bloating can first be 

seen in the face and causes the lips to protrude, followed by the large swelling of the 

abdomen (Clark et al. 1997).  In men, the scrotum also swells.   

Before rigor sets in, the muscles of the body relax and the body will often soil or 

urinate as a result of loss of muscle tone (Perper 2006).  Segmented portions of the 

digestive tract often get passively transferred, and when the duodenum passes on bile to 

the stomach, bile will assist in autodigestion of the stomach wall and contents (Perper 
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2006).  The gastrointestinal tract and the contents of the stomach undergo decomposition 

from both autolytic and putrefactive processes and create an artifact known as purge fluid 

(Clark et al. 2006).  Putrefactive gases force purge fluid out of the body through the nose 

and mouth.  

In a living body, the spleen digests dilapidated red blood cells and this digestion 

enables the liver to produce multi colored pigments.  After death, autolytic lysing of 

pancreatic cells releases bile and multiple colors of pigments into the circulatory and 

abdominal tissues (Gill-King 1997).  The anterior portion of the abdomen eventually 

develops a green discoloration as a result.  In addition, the degeneration of hemoglobin 

throughout the body also “produces widespread pigment coloration effects in the body’s 

tissues (Gill-Clark 1997:101).”   

Extrinsic intestinal bacteria normally break down proteins through a process 

known as decarboxylation, which produces a number of products, including hydrogen 

sulfide gas, putrescine and cadaverine, the latter two of which are responsible for 

decompositional odors (Gill-King 1997).  Hydrogen sulfide breaks down amino acids that 

contain sulfur when amino acids are in the presence of red blood cells that are in the 

process of lysing.  Sulfur binds with hemoglobin to produce “greenish-purple” 

sulfhemoglobin molecules (Gill-King 1997:101).  The process obviously occurs where 

there are red blood cells and consequently the superficial vessels and the areas affected 

by livor mortis will turn from green to purple to black (Clark et al. 1997; Gill-King 

1997).  Therefore, this process is also responsible for the macroscopic color changes 

associated with livor mortis and the superficial veins and arteries, a phenomenon known 
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as marbling.  The process of sulfur binding to hemoglobin is also affected by the ambient 

temperature (extrinsic) and by the percentage of subcutaneous fat (intrinsic) on the body 

(Gill-King 1997).  

  

Mummification and Adipocere 

 Mummification is an intrinsic taphonomic change associated with dry climatic 

conditions during the depositional time frame (Mann et al. 1990).  Perper describes, 

“Mummification results from drying of tissues under conditions of high environmental 

temperature, low humidity and good ventilation (2006:114).”  These conditions cause the 

skin or other soft tissue to dehydrate and tighten as body fluids evaporate into the 

surrounding air (Clark et al. 1997:157; Perper 2006:115).  The rapid desiccation and 

shrinkage of the tissues sometimes cause them to tear in the “groins, neck and armpits 

(Perper 2006:115).”  Mummification of the skin typically first occurs in the knees, 

elbows, fingertips, and toes, where it takes on the appearance of “shriveled, with 

wrinkled, firm, brown skin (Perper 2006:115).”  Perper describes, “(o)nce mummification 

is fully developed, the body remains preserved as a shell for long periods of time, even 

years (2006:115).  

 Mellen and colleagues have described adipocere as “a waxy or greasy 

decomposition product formed from hydrolysis and hydrogenation of adipose tissues 

(1993:91).”  This foul-smelling intrinsic development first appears grey, with a “soft, 

greasy, clay-like, plastic consistency (Perper 2006:115).”  Haglund notes that over time it 

can become “hard and brittle” and then remain for years (Haglund 1993:812; Mellen et 
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al. 1993).  Like mummification, adipocere formation protects the integrity of the soft 

tissue remains and slows the rate of taphonomic change (Perper 2006).  This taphonomic 

feature tends to affect the “subcutaneous tissues of face, extremities, buttocks and female 

breasts (Perper 2006:115).”  On account of adipocere’s known ability to decrease the rate 

of decay and that temperate affects its onset, adipocere formation may be an adequate 

intrinsic factor to use in prediction of the postmortem interval or especially, for the 

prediction of accumulated degree days.   

       

Taphonomic Influences 

To deconstruct the complexity of decay, it is necessary to understand the myriad 

of factors that interface in the decomposition process and affect the rate of taphonomic 

change.  These factors make decomposition a process that is mostly dependent on 

extrinsic environmental conditions and the intrinsic metabolic status of the individual 

prior to death (Perper 2006).   

Factors that influence the rate of decomposition are primarily those extrinsic and 

cultural considerations that interact with or regulate access to the remains.  Extrinsic 

physical factors that may accelerate the decomposition process would include sunlight, 

wind exposure and the presence or absence of groundwater and soil acids (Ubelaker 

1997).  Environmental factors are connected in their influence as they alter one another 

so that the effects of one element cannot be isolated (Mann et al. 1990).  Mann and 

coworkers (1990:104) note, “(t)o isolate one variable would, in reality, give us only a tiny 

piece of a biased puzzle.”  There has been an extensive amount of research on 
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identifying, understanding, and determining the contribution of individual factors, 

although most of this research is particular to outdoor scenarios (i.e., Mann et al. 1990; 

Rodriguez and Bass 1983).  Conclusively, temperature has been identified as the most 

important variable in the rate of decay (Mann et al. 1990).  

  

Temperature 

Mann and colleagues (1990) found that ambient temperature has the greatest 

control over the rate of decomposition.  Heat accelerates the process of autolysis by 

increasing the speed of catalytic enzymes within the body and consequently the increased 

rate of autolytic cell breakdown increases the rate of putrefaction (described below; Clark 

et al. 1997; Gill-King 1997; Perper 2006).  Temperature also influences many other 

variables that act on decomposing remains.  For example, plants, animals and insects are 

more active and exist in larger numbers during periods of warmer temperatures, and thus 

decomposition proceeds at an accelerated rate in warm climates.  In contrast, cold 

temperatures tend to preserve soft tissue and prevent insects from thriving (Mann et al. 

1990).  These relationships reveal temperature as a driving force in the rate of 

decomposition. 

Perper (2006:108) provides an example from a couple that were killed within 

minutes of one another but decomposed at substantially different rates.  The woman was 

murdered in the basement where the temperature was cool whereas the man was killed in 

the upstairs portion of the house.  The outside temperature had been a warm 90° F and so 

the man’s body had been subjected to substantially warmer temperatures during the 
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couple’s forty-eight hour postmortem interval.  The woman’s body may have been 

classified as fresh with very little decompositional change, yet the man’s body had 

rapidly decomposed and was showing evidence of skin slippage, bloating and green 

discoloration at the time of discovery.  This case study exemplifies the powerful 

influence of temperature on the rate of human decay.   

 

Accumulated Degree Days 

Accumulated degree days (ADD) are a measure of temperature over time that has 

traditionally been used to determine the rates of insect development (refer to Higley and 

Haskell 2001; Haskell 2006) but can be dually applied to estimating the rate of human 

decompositional change.  ADD are useful for estimating the age of insects because 

insects cannot maintain their own body temperature, and so insect development is largely 

dependent on ambient temperature (Higley and Haskell 2001:288).  ADD models are 

species specific and are based on linear regression models that consider the maximum 

and minimum temperatures of which a specific species can develop (Higley and Haskell 

2001).  Accumulated degree days (ADD) are calculated as the “minimum developmental 

threshold” temperature multiplied by time (Higley and Haskell 2001:290).  Insects’ 

minimum developmental thresholds are commonly regarded as 6˚C and 10˚C (Higley and 

Haskell 2001:290).   

To apply this method towards the estimation of time since death, the PMI must be 

quantified in degree days (DD).  In entomological research, the species of insect found on 

the remains is identified and local weather data are acquired from a weather station 
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(Haskell 2006).  To determine the ADD, each day of the PMI where temperatures met the 

minimum developmental threshold are totaled.  The accumulated minimum 

developmental threshold temperatures over the PMI are then compared to the known 

ADD that are necessary for the insect species to reach the stage of development in which 

they are found (Haskell 2006; Higley and Haskell 2001).  The estimated PMI will equal 

the number of days needed to accumulate the minimum developmental temperature 

specified by the DD regression model (Higley and Haskell 2001).  

Accumulated degree days can also be used to measure temperature over time for 

estimation of the rate of decay.  In a study by Megyesi and colleagues (2005), the 

quantification of ADD was modified from the traditional approach so that only 

temperatures above 0˚C were summed for each day that composed the postmortem 

interval.  Megyesi et al. cited Vass et al. (2001) research, stating, “because of salt 

concentrations in the human body, decomposition will occur down to 0˚C (2005:621-

622).”  They argued that the minimum temperature needed to contribute to the ADD 

could be lowered to 0˚ C.  This study therefore disregarded temperatures associated with 

insect development and modified the definition of ADD to be the summed mean 

temperatures that were above 0˚ C for all days that composed the postmortem interval.  

The Megyesi et al. (2005) approach to calculating ADD was adopted within this study.   

Prediction of ADD rather than PMI days for time since death estimations is a 

relatively novel development, but has been implemented by other researchers (Megyesi et 

al. 2005; Vass et al. 1992; Love and Marks 2001).  In a survey of forensic 

anthropologists’ case studies from across the United States, Mary Manhein (1997) found 
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that most anthropologists identified climate as one of the most important variables 

affecting the rate of decay.  Additionally, in her discussion Manhein notes: 

 

“Respondents’ comments indicated that more specific information in 
regard to recording such variables as climate was needed.  To overcome 
such a problem, climatic conditions specific to each case’s 
microenvironment need to be recorded in such a way as to be universally 
tabulated (Manhein 1997:478).” 
 

The primary benefit that comes from using ADDs rather than actual days is that it 

compounds time with temperature, the most important dictator in the rate of decay.  The 

other benefit that comes from using accumulated degree days is the standardization of 

rates of change, which allows the same system for estimation of the PMI to be used 

globally.   

 

Cause and Manner of Death 

With unexpected deaths, investigators reconstruct circumstances surrounding 

death to establish the cause and manner of death.  Adams and colleagues (2006:439-440) 

define the cause of death as “the original underlying medical condition which initiates the 

lethal chain of events culminating in death.”  Establishing cause of death can be difficult 

as there can be multiple causes that vary in their levels of contribution towards cessation 

of life.  In some instances a medical examiner may need to distinguish between a 

proximate cause of death (such as a sustained head injury) and the immediate cause of 

death (such as the bronchopneumonia that the person developed after becoming bed 

ridden from the injury; Adams et al. 2006:440).  In autopsy reports and death certificates, 
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cause of death is divided into primary and secondary causes and allows room for causes 

within each category (Perper 2006:90).  Primary causes of death are the immediate 

causes, such as a gunshot wound to the head, whereas secondary causes are contributory 

factors such as arteriosclerotic cardiovascular disease.  Determining the cause of death 

can also be important for evaluating the rate of decomposition.  Injuries can magnify 

insects’ access to soft tissues and contribute towards rapid soft tissue destruction 

(Galloway 1997; Galloway et al. 1989).  Additionally, people who die with sepsis may 

experience rapid onset of putrefaction due to the increased prevalence of microorganisms 

within the body (Perper 2006).  

The manner of death is “the legal classification of death (Perper 2006:90).”  This 

category speaks to the issue of accountability for a person’s demise and has strong legal 

ramifications (Adams et al. 2006).  People who die from natural deaths die solely from 

disease; this category encompasses both infectious and chronic diseases including chronic 

alcoholism.  Accidental deaths are those deaths that were not natural and where there 

were no harmful intentions involved.  Accidental deaths are often traumatic in nature but 

do not necessitate trauma, such as when a person dies from positional asphyxia or an 

accidental overdose.  A suicidal death does not necessarily have to be violent in nature 

but occurs when a person intentionally terminates his or her own life.  Lastly, homicides 

are those deaths that occur when a person deliberately kills another person.  Within the 

latter two categories, it is especially important to demonstrate intent because of the legal 

and social implications associated with suicides and homicides (Adams et al. 2006).  
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Lastly, a death may be classified as undetermined if there is insufficient evidence to 

provide a legal classification for a death.   

Manners of death are epidemiological in nature, as human activities are almost 

always the acute or chronic agents behind the death event.  For example, Daniel Spitz 

attributes the occurrence of drowning to environmental factors and human factors, the 

latter of which he describes as “a victim’s mental health, medical conditions, drug or 

alcohol use and swimming ability (2006:847).”  These “human factors” may be 

understood as the epidemiological contributions to a drowning death event.  While in a 

retrospective study it may not be possible to ascertain all epidemiological factors that 

precipitated a person’s death, consideration of the cause and manner of death represent an 

available source of data that provide an avenue to account for some epidemiological 

factors.  These factors in congruence with other epidemiological variables were explored 

to provide meaningful information on how human behaviors contribute towards the 

demographic profile for undiscovered deaths and their associated depositional contexts. 

 

Epidemiological Factors 

 For the purpose of constructing a forensic taphonomy model, epidemiological 

factors are defined as any element of human influence that interact with a set of remains 

or have contributed to the death or deposition of the body in question.  Roksandic asserts,  

 

“both natural and cultural agents should be regarded as taphonomic… 
External factors such as the time elapsed between death and burial, the 
treatment of the body prior to burial, and the burial environment…are all 
primarily cultural (Roksandic 2002: 100, 101).”   
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Cultural and behavioral factors affect how a person dies, how and where the body is 

deposited, and what aspects of the outside environment have access to the remains.   

A person’s identity may also play a role in the peri- and postmortem 

circumstances.  Kimmerle and colleagues note that collective identity places an 

“individual into a particular cultural, demographic, religious, or ethnic group 

(2009:180),” which can be estimated through indicators such as age, ethnicity and sex.  

Contextual identity takes into consideration collective identity as well as behavioral 

patterns associated with the individual, such as being transient or sedentary (Kimmerle et 

al. 2009).  The authors found patterns among collective and contextual identity, location 

of the crime, and whether or not the case was solved.  For this thesis, collective and 

contextual identities were explored for relationships with taphonomic contexts, manners 

of death and extended postmortem intervals.        

Morten and Lord’s (2002) study of child abduction and murder provides an 

excellent example of how behavior affects taphonomic circumstances.  They found that 

children’s “remains were disposed of in different scenarios depending upon the 

motivation of the offender and the age of the victim (2002:153).”  For instance, 

murderers of neonates, infants and toddlers often did so for “emotional reasons” and the 

offenders typically deposited the victim’s body within or near the home.  In contrast, 

children of 12 to 14 years of age were often abducted and murdered for sexual purposes, 

and were disposed of five miles or more from the home.  Due to the nature of the death 

event, the offenders usually concealed the bodies where they were deposited (Morten and 
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Lord 2002).  This study encapsulates how behaviors surrounding the death event dictate 

the taphonomic patterns that ensue.     

A case study described by Steadman and Worne (2007) provide another example 

of how culture and behavior intersect with the taphonomic context.  In their case study on 

canine scavenging within a home, the decedent was an elderly woman who lived alone 

and rarely interacted with her neighbors.  No one came to check on her for four weeks 

and when it was discovered that she had died, very little of her body remained.  Steadman 

and Worne noted, “(t)he social parameters of this case fit a trend…in which victims of 

postmortem feeding live alone with one or more pets and are socially isolated (2007:81).”  

With this passage, the authors are demonstrating the link between the behaviors of the 

decedent in life to the taphonomic circumstances of her death.  This case study illustrates 

how circumstances surrounding unaccompanied deaths are epidemiological in nature in 

that cultural and behavioral factors from before death dictate the taphonomic conditions 

after death.  Therefore, the investigation of decedents’ taphonomic profiles should 

include consideration of epidemiological trends.   

  

Burial Factors 

 For the purpose of this investigation, epidemiological factors under consideration 

are primarily those directly associated with the remains.  For example, the presence of 

clothing is a factor of human influence that has been associated with a decreased rate of 

decay, because clothing tends to act as a barrier between the body and the external 

environment (Galloway 1997; Galloway et al. 1989; Komar 1998; Mann et al. 1990).  
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For water burials, it has been found that clothing in conjunction with warm temperatures 

may also promote the formation of adipocere (Mellen et al. 1993).  Clothing on remains 

located in moving water can also facilitate the sloughing of soft tissues from the body 

(Haglund 1993).  Shoes on the deceased serve to protect feet and severely retard the 

decomposition process (Roksandic 2002:102).  Additionally, synthetic clothing and 

containers have been implicated in severely retarding the rate of decay.  Manhein (1997) 

has found a relationship between the presence of a container around a body and the 

formation of adipocere.  These examples provide support for consideration of human 

introduced barriers to the body as important in estimation of the rate of decay and the 

postmortem interval.    

For bodies within structures such as vehicles or hotel rooms, the structure itself 

can serve as a human influenced barrier between the body and the extrinsic constituents 

of the outside environment, such as insects (Haskell 2006).  The degree of separation 

between the corpse and the outside setting depends on how well sealed the structure is, 

such as whether or not there are open windows.  Enclosed decomposition settings also 

present other burial factors of human influence, such as the surface of deposition and the 

potential for climate control.  Therefore, factors such as the surface of deposition, 

whether or not the body is buried, indoors or wrapped are all important epidemiological 

considerations that affect insects’ access to the remains and must be considered for 

estimation of the postmortem interval (Mann et al. 1990). 

To assess the human influences of the enclosed environment, this study examined: 

clothing and other barriers to the body, whether heat or air conditioning were used, 
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windows were open or closed, the surface of deposition, and the cause and manner of 

death.  These epidemiological parameters are capable of being observed in a retrospective 

study and were used to improve the estimation of the postmortem interval for enclosed 

settings.  

 

Location 

Due to the numerous physical and biological variables affecting the sequence and 

length of postmortem changes, it is logical to assume and has been empirically 

demonstrated that location of deposition will affect the rate of decomposition (Galloway 

1997; Galloway et al. 1989; Komar 1997; Mann et al. 1991; Voss et al. 2008).  A review 

of the literature indicates that there are many unique and specific factors that culminate to 

produce highly variable postmortem intervals (PMI), which are environmentally and 

geographically specific (Mann et al. 1990).  The depositional context will largely 

determine which variables affect a carcass and the degree of influence for each, which 

affects how decompositional change correlates with PMI (Galloway 1997; Galloway et 

al. 1989; Komar 1998; Mann et al. 1990; Rodriguez and Bass 1985; Roksandic 2002).  

Researchers can control for some variability and intersection of extrinsic forces by 

analyzing differential contexts separately and by taking a multivariate approach to 

analysis.  For this thesis, environmental variation was considered and all settings 

represented were examined separately. 
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Outdoor Surface Locations 

 Previous research has yielded data on the characteristics of decay at various 

stages, which have become exemplary standards for the study of the postmortem interval 

among variable climates for surface depositions (Bass 1997; Galloway 1997; Galloway et 

al. 1989; Komar 1998; Rodriguez and Bass 1983).  A review of these analyses reveals 

general properties that may be identified on a decomposing body, identifies important 

extrinsic factors that regulate the rate of decay, demonstrates regional variability, and 

ultimately allows for a more critical comparison among the observations from Nebraska 

and previous research.  

 For outdoor surface locations, insects are largely responsible for soft tissue 

removal (Bass 1997; Mann et al. 1990).  Entomological information is useful because 

“decay rates of human cadavers have a direct relationship to the successional pattern of 

carrion frequenting insects (Rodriguez and Bass 1983:423).”  The contribution of 

scavenging is almost entirely dependent on necrophagous organisms’ access to the 

remains.  Conversely, barriers between the body and the external environment will tend 

to impede insects’ access and decelerate the process of putrescence (Bass 1997; Galloway 

1997; Galloway et al. 1989; Mann et al. 1990; Rodriguez and Bass 1983).  For example, 

heavy rains may hamper flies’ ability to lay eggs on a carcass; yet if a maggot mass has 

already formed, rain is not likely to affect them (Mann et al. 1990).   

The most precise method for estimating the postmortem interval utilizes the 

development and life cycles of fly species and the succession of insect species that 

colonize rotting remains (Haskell 2006).  The colonization sequence is primarily 
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composed of flies (order Diptera) and later, beetles (order Coleoptera), who seek out 

necrotic tissue and lay their eggs in the natural openings of a carcass, such as the mouth 

and nose (Bass 1997; Rodriguez and Bass 1983).   

The ideal circumstances for maggot proliferation involve moist, warm and dark 

conditions (Bass 1997).  When maggots colonize a body that is exposed to the sun, they 

will create a dark environment by consuming only the skin that is in contact or near to the 

ground, while leaving the rest as a shield.  Consuming the skin near the ground also 

provides an aperture to allow air to pass into the carcass where the insects inhabit (Bass 

1997).  

For outdoor scenarios, flies have been found to land on the remains within a few 

hours and have eggs hatching within six to forty hours (Rodriguez and Bass 1983).  After 

the larvae have reached their full size, they relocate from the body to surrounding soil or 

other covering and pupate for six to eighteen days.  While flies prefer warm temperatures, 

blow flies (family Calliphoridae) are able to live and reproduce when temperatures 

exceed negative fifteen degrees Celsius (Bass 1997; Rodriguez and Bass 1983).  The 

timing of insect development is dependent on temperature.  Thus, the contributions of 

insects and temperature towards the rate of decomposition are often intertwined. 

In an experimental study, Rodriguez and Bass (1983) used the physical 

characteristics of the remains to identify four basic stages of human decomposition, and 

found that each stage was strongly associated with certain families of insects.  Bass 

(1997) created a timetable for outdoor surface remains found during the summer months 

in warm, moist climates, in which he attributed most of the soft tissue loss to the work of 
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insects (Table 2.2; also see Appendix A).  Bass’ (1997) stages appear to be a further 

development of the previous analysis by Rodriguez and Bass (1983), and are based on 

observations from research performed at the Anthropological Research Facility (ARF) at 

the University of Tennessee (Bass 1997).  At the ARF, the remains are fenced in so as to 

restrict large animals from access to the bodies.  Hence, his data do not account for any 

contributions from large scavengers.  The more decomposed the remains are, the larger is 

the time range in which different bodies achieve that stage.  In other words, the time 

range assigned for the postmortem interval becomes less precise for bodies that 

decompose for longer periods of time.   

Rodriguez and Bass (1983) found that predominant insect species involved in 

colonizing carrion roughly correlate with the specific stage of decay.  The “fresh stage” is 

primarily associated with flies (Dipteras).  According to Bass’ (1997) stages, during the 

“fresh” phase (one day), flies are attracted to the body and begin to lay eggs in its natural 

openings or in open wounds (Table 2.2).  As a result, “egg masses” may appear in these 

orifices (Bass 1997:183).  The cadaver exhibits fluids seeping from the nose or mouth 

and the veins turn a blue or green hue as a result of putrefaction.   

The second phase is that of “fresh to bloated” (first week), where body fluids seep 

from the mouth, nose and rectum, and the abdomen becomes distended from putrefactive 

gasses that well up inside the intestines.  The “bloated stage” has a continued strong 

presence of Dipteras and is also accompanied by carrion beetles and clown beetles 

(Rodriguez and Bass 1983).  As a consequence of increased maggot activity, the face 

becomes rapidly skeletonized (Bass 1997).  Molds may appear and beetles grow 
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interested in the corpse.  Decompositional odors and discoloration of the veins become 

more prominent and skin slippage begins to occur (Bass 1997).     

The third transition is from “bloated to decay” (the first month), where the 

intestinal gases have found release and the abdominal region is depressed (Bass 

1997:184).  The “decay stage” is characterized by the rapid loss of soft tissue, the 

presence of sap beetles, and the eventual decline in other insects towards the end of this 

phase (Rodriguez and Bass 1983).  Maggot activity subsides and beetles begin to 

dominate the carcass (Bass 1997).  The carcass and the surrounding area may be 

blackened as a result of contact with the volatile fatty acids that leach from the remains.  

Much of the soft tissue has decayed away, and the skin may remain intact but 

mummified, which serves as a barrier to sunlight.  Lastly, molds, and if in a moist 

environment, adipocere may form on the remains (Bass 1997).  

During the “dry stage,” sap beetles are joined by dermestid, lemellicorn and 

checkered beetles (Rodriguez and Bass 1983).  The dry stage (the first year) occurs after 

the first month and involves taphonomic alterations to bone, such as bleaching or moss 

growing onto the bone (Bass 1997:184).  Rodents and wasps may be seen using the 

remains to build nests.  The strong connection between decompositional state of the 

remains and insect colonization demonstrates that temperature and insect involvement are 

important factors in the rate of decay for outdoor surface remains. 
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Table 2.2—Decay Rates Defined by Bass (1997). 
Stage  Characteristics 

First Day 
(Fresh) 

• Egg Masses will be white and may look like fine sawdust. 
• Veins under the skin may be turning blue or dark green. 
• Some body fluids may be seen around the nose and mouth. 

 
First Week 
(Fresh to 
Bloated) 

• Maggots have hatched and are active in the face. 
• Lips may be distended because of the maggot mass under the skin. 
• Skin around the eyes and nose is eaten away exposing bone. 
• Beatles appear as a part of the sequence of carrion insect activity. 
• Skin slippage on the body is beginning. 
• Hair is beginning to slip from the scalp. 
• Veins are prominent under the skin and are dark blue or dark green. 
• The odor of decay is present. 
• Body fluids may be flowing from the nose, mouth, and rectum. 
• Abdominal areas may be bloated. 
• Molds of various colors begin to appear on the body. 
• Mammalian carnivores may be active and will greatly speed up the decrease of soft tissue 

by eating the decaying tissue as well as bone. 
• Body fluids (volatile fatty acids) may have killed the vegetation immediately around the 

body. 
 

First Month 
(Bloated to 
Decay) 

• Maggot activity is much less and beetles are present on and around the decaying body. 
• Bloating is past and the body is in the decay phase. 
• If in the spring, birds may be using hair that has slipped from the scalp to build nests 

(Mann et al. 1990). 
• If the body has been covered most of the bones will be exposed where the soft tissue has 

decayed away. 
• If the body was not covered, the skin between the skeleton and the sunlight will be intact 

to protect the maggots around the sun.  It will now be getting dry and leathery.  If the 
body lies on its back the dry skin will be holding the ribs together. 

• Mammalian carnivores may be carrying off limbs and even the skull. 
• Molds (of various colors) have spread over the soft tissue and on the bones.  The area 

around the body may be stained dark and the body may appear to have been burned.  This 
is from the volatile fatty acids that have leached out of the body during the decay process. 

• If the body decayed on an incline, these volatile fatty acids will kill the vegetation as it 
flows from the body. 

• Adipocere may appear on a body decaying the moist environment.  If in the water, the 
adipocere will first be seen in the area from about 2 inches above to about 2 inches below 
the water line.   
 

First Year 
(Dry) 

• Bleaching of the skeleton has occurred from the sunlight. 
• The portions of the skeleton in the shade may have moss or green algae growing on them. 
• Rodent gnawing may be present along the crest or edges of bones (the eye orbits in the 

skull, the linea aspera of the femur, etc.). 
• Mice may be using the skull as a nest. 
• Wasps may build a nest in the skull if the skull was dry by late March or early April 

during the nest building period. 
* Reproduced exactly from Bass (1997:183-184) 
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Galloway and colleagues (1989) studied decomposition for outdoor surface 

depositions in Arizona.  The authors found that there was comparable variation in the 

rates of decay for human bodies that decompose in hot, arid environments.  They took 

into account factors that may affect the rate of decay as well as the presence or absence of 

physical indicators of decomposition (i.e., marbling), which is similar to what has been 

done in the current study.  Dry conditions often lead to natural mummification where the 

tissues desiccate and preserve (Mann et al. 1990).  However, humidity and temperature 

are entangled processes because seasonal increases in temperature are often associated 

with seasonal increases in precipitation.  Consequently, these variables must often be 

evaluated simultaneously (Galloway 1997).  In conjunction with temperature and 

humidity, whether the body is primarily exposed to sunlight or shade affects the 

decomposition process (Perper 2006).  Sunshine coupled with aridity leaches the 

moisture out of a body and causes it to mummify, whereas shady conditions facilitate the 

retention of moisture (Galloway 1997; Galloway et al. 1989).  Under extremely arid and 

sunny conditions, mummification of the skin has also been discerned as impeding the 

infestation of maggots and hence decelerating the process of soft tissue removal 

(Galloway et al. 1989; Schroeder et al. 2002). 

Galloway et al. (1989) used decomposition phases that approximated those of 

Rodriguez and Bass (1983), but they also added supplementary subcategories that further 

described the condition of the remains (Galloway et al. 1989; Table 2.3).  Rather than 

suggest a chronological sequence, these secondary categories describe multiple 

decompositional states within each stage, which makes them widely applicable to a 
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variety of postdepositional contexts.  Unlike Bass’ (1997) description of transformative 

changes and his strong focus on insect activity, Galloway et al. (1989; Galloway 1997) 

emphasized the physical state of the remains, which may possess more utility for a less 

experienced observer when attempting to accurately assign a phase.   

For example, a body is considered “fresh” when there are no maggots on the 

remains and the only obvious postmortem change is lividity (Galloway et al. 1989:608).  

“Early decomposition” begins when the body becomes discolored and is followed by 

bloating (Table 2.3).  “Advanced decomposition” encompasses both moist and dry post-

bloat changes, such as considerable maggot activity and drooping of soft tissue for the 

former, and mummification and desiccation for the latter (Galloway et al. 1989:608).  A 

corpse may be considered “skeletonized” when more than half of the bone is exposed, 

and “decomposition of the skeletal elements” comprises bone breakdown, such as 

“bleaching, exfoliation, and cortical breakdown (Galloway et al. 1989:608).”       
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Table 2.3—Stages of Decay Defined by Galloway et al. (1989). 
Fresh • Fresh no discoloration or insect activity 
 • Fresh burned 

Early 
Decomposition 

• Pink-white appearance with skin slippage and some hair loss 
• Gray to green discoloration, some flesh relatively fresh 
• Discoloration to brownish shades particularly at fingers, nose, 

and ears; some flesh still relatively fresh 
• Bloating with green discoloration 
• Post bloating following rupture of the abdominal gases with 

discoloration going from green to dark 
• Brown to black discoloration of arms and legs, skin having 

leathery appearance 
 

Advanced 
Decomposition 

• Decomposition of tissues producing sagging of the flesh, caving 
in of the abdominal cavity, often accompanied by extensive 
maggot activity 

• Moist decomposition in which there is bone exposure 
• Mummification with some retention of internal structures 
• Mummification of outer tissues only with internal organs lost 

through autolysis or insect activity 
• Mummification with bone exposure of less than one half the 

skeleton 
• Adipocere development 

 
Skeletonization • Bones with greasy substances and decomposed tissue, sometimes 

with body fluids still present 
• Bones with desiccated tissue or mummified tissue covering less 

than one half the skeleton 
• Bones largely dry but still retaining some grease 
• Dry bone 

 
Extreme 
Decomposition 

• Skeletonization with bleaching 
• Skeletonization with exfoliation 
• Skeletonization with metaphyseal loss with long bones and 

cancellous exposure of the vertebrae 
* Reproduced exactly from Galloway et al. (1989:609) 
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Komar (1998) studied decomposition in the colder climates of Canada, and found 

sizable variation in decay rates, where scavenging largely contributed to the dispersion of 

the remains and the destruction of soft tissue for terrestrial finds.  Information about 

scavenging behaviors associated with the consumption of carcasses can assist in the 

reconstruction of the body’s taphonomic history.  Haglund (1997a, b) has shown that 

larger animals are attracted to decomposing remains, and contribute to the processes of 

decomposition and disarticulation in a predictable manner.  Carnivores tend to consume 

the flesh of the face, feet and hands first (Mann et al. 1990).  Haglund (1997a) describes 

the earliest scavenging as focusing on the face and neck, followed by destruction of the 

torso and partial or full removal of the upper and then lower limbs.  As the remains 

continue to be strewn and skeletonized, canids tend to disarticulate all remaining joints, 

leaving only the cranium and bone fragments.  During this process, remains tend to be 

strewn over large geographic regions and are often not recovered (Haglund 1997a).   

Although insect activity was not considered, Komar (1998) did investigate mean 

monthly temperatures’ concurrence with the postmortem interval, and found that summer 

decay rates progressed more rapidly than winter decay, a trend that is consistent with 

other literature (Bass 1997; Galloway 1997; Galloway et al. 1989; Rodriguez and Bass 

1983).  Skeletonization in Canada happened in less than six weeks during the summer 

and in less than four months during the winter (Komar 1998:59).  In Arizona, outdoor 

skeletonization (50.0% or more of the remains) was found to occur between two and nine 

months after deposition (Galloway et al. 1989), and during the summer in Tennessee, 

skeletonization may be achieved between two and four weeks (Mann et al. 1990).  
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Although the time ranges are longer for outdoor decomposition in the winter, the 

composition of the remains are approximately the same for both seasonal extremes 

(Galloway 1997; Galloway et al. 1989).  In other words, the body passes through the 

same taphonomic changes in both environments, but they develop and disappear at 

differing rates.  

Skeletonization is a process of advanced decompositional change that is 

characterized by the absence of soft tissue.  While the aforementioned studies show that 

skeletonization proceeds at different rates among different environments, it is not clear as 

to whether or not the sequence of skeletonization was the same.  Roksandic (2002:102) 

discusses Dirkmaat and Sienicki’s 1995 presentation on the sequence of skeletonization 

for surface depositions when carnivore activity is absent.  They found that Diptera larvae 

infestation of the facial region led to skeletonization first occurring in the cranium.  In 

conjunction with the loss of soft tissue in the cranial region, the clavicles and sternum 

were next to become skeletonized.  Dirkmaat and Sienicki also found that the thoracic 

and abdominal regions tended towards skeletonization before the pelvic region 

(Roksandic 2002:102).  Upper extremities usually skeletonized before the lower 

extremities, and feet were the last area of the body to lose their integrity.  When sun 

exposure was present, they found that portions of the skin would mummify rather than 

skeletonize.   

 Disarticulation of skeletal elements typically occurs as a result of skeletonization.  

Haglund (1993:812) describes, “The sequence of disarticulation is influenced by the 

nature and relative anatomical position of the joint involved.”  Disarticulation of joints is 
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a function of the joint flexibility and the ligament attachments, where more flexible joints 

are likely to disarticulate before less flexible joints or those with strong ligament 

attachments (Haglund 1993, 1997a).  Roksandic (2002:103-104) summarizes Duday’s 

(1985) work and explains that there are “three types of articulations: weak articulations 

with a small volume of soft tissue attached to them (extremities), weak with an important 

volume of soft tissue attached (trunk), and persistent articulations.”  Joints with little 

flexibility and more rigid articulations such as the vertebral column tend to remain intact 

longer than pliant joints such as the “radio-carpal, tibial-tarsal, elbow, and knee joints 

(Haglund 1993:812).”  However, disarticulation across cases does not follow a 

straightforward pattern.  Roksandic (2002:104) describes:  

 

“the relationship of joints to portals of entry for insects, accessibility and 
feeding behavior of scavengers, the position of the body and types of 
surfaces the remains rest on (inclines for example) have to be included as 
well.  Again, as with decomposition rate, disarticulation sequences are 
highly environmentally and micro environmentally specific (Haglund, 
pers. commun.).” 

 

With this and other examples, Roksandic (2002) discusses the variation in the 

sequence and rate of skeletonization and disarticulation within varying environments, and 

thereby underscores the environmental particularism of taphonomic changes.  These 

studies exemplify the disparity in decomposition rates that are due to the variation in 

environmental contexts, and specifically, temperature and humidity.  Research on 

outdoor, terrestrial locations has yielded exceptionally useful information for both 

application and for the development of the field of forensic taphonomy.  However, there 
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are clearly gaps in the literature where more research is needed on this topic.  Although 

the data for the current study does not possess many cases of outdoor finds, outdoor 

surface cases were analyzed separately and the results were compared with Bass’ (1997) 

results in an effort to provide a meaningful contribution to location-specific analyses of 

human decay.  

 

Subsurface Locations 

It has been shown that buried bodies decay more slowly than bodies deposited on 

the ground’s surface (Mann et al. 1990; Rodriguez 1997; Rodriguez and Bass 1985).  The 

aforementioned authors found that burial depth was one of the most pertinent variables 

affecting the pace of decomposition in subsurface burials, where deeply buried bodies 

decompose more slowly than those placed in shallow graves.  Rodriguez and Bass (1985) 

conducted experimental research in Tennessee where bodies were buried with 

thermometer probes at depths ranging from 1 – 4 feet.  They discovered that soil depth 

was paramount in subsurface decomposition rates because it retarded two major extrinsic 

factors: insect access to the remains and temperature increase or fluctuations.   

Rodriguez and Bass (1985) determined that Diptera could not access remains 

buried at 2 feet below the surface, but could gain entry to the remains when bodies were 

buried only one foot deep.  For cadavers only one foot subsurface, decomposition odors 

permeated the soil and attracted Dipteras (Rodriguez 1997).  The flies were detected 

maneuvering cracks in the soil in attempts to reach the carcass and were also observed 

depositing eggs on top of the soil and within its crevices (Rodriguez and Bass 1985:848).  



 

 

    66 

Diptera activities appeared to become more prevalent right after heavy rainfall 

(Rodriguez 1997; Rodriguez and Bass 1985).  When the larvae hatched, they migrated 

through the soil until they reached the remains; thus the burial depth and the degree of 

soil compaction above the carrion are important considerations for insect access in 

subsurface depositions (Rodriguez 1997).   

Thermometers that measured the temperatures of each body during decomposition 

showed that soil acts as a mechanism for insulation of buried carrion.  Rodriguez and 

Bass ascertained that “(s)oil temperatures and the fluctuation of those temperatures were 

found to decrease with increasing in soil depth (1985:849).”  In fact, daily temperature 

fluctuations only occurred in burial depths of one foot.  Beyond one foot subsurface, a 

cadaver is relatively insulated from daily temperature trends.  These observations indicate 

that the deeper a body is buried, the slower the rate of decomposition (Rodriguez 1997).  

This correlation is reflective of temperature as the most important factor in 

decompositional change (Mann et al. 1990). 

The differential susceptibility to surface temperatures by grave depth was also 

reflected in another finding.  Rodriguez and Bass (1985) found that bodies increased in 

temperature relative to the ambient soil.  Further, burial depth affected the difference 

between body temperature and soil temperature as well as the time needed to achieve that 

difference.  The increase in temperature of a deceased organism is directly related to “the 

high metabolic rates of dipterous larvae and bacteria (Rodriguez and Bass 1985:850).”  

Given that insects are restricted from buried remains, it appears that the increase in 

carrion temperature is primarily a result of bacteria involved in putrefactive processes.  
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The authors note that due to “lower environmental temperatures and fluctuating oxygen 

and pH levels, bacterial action should be somewhat decreased (Rodriguez and Bass 

1985:850).”  This hypothesis was supported in that the temperature differential between 

buried remains and the ambient environment were lower than they were for previously 

examined surface remains.  Additionally, bodies located closer to the surface had higher 

mean temperature differentials (one foot = 10˚C) than the cadavers that were placed in 

deeper graves (4 feet = 3.4˚C).   

When the bodies used for Rodriguez and Bass’ (1985) study were examined, it 

was found that the degree of decomposition clearly correlated with the depth of burial; by 

inference, the degree of decomposition was also correlated with the degree of insect 

predation and temperature exposure.  An association between deep burials and moist 

environments was also identified and has been observed elsewhere (Galloway 1997:147; 

Rodriguez 1997:460).  Plant growth near subsurface burials can also contribute to tissue 

breakdown (Rodriguez 1997; Rodriguez and Bass 1985).  Plant growth may be catalyzed 

by the autolytic release of substances that act as fertilizer.  Shallow graves tend to have 

increased plant growth because the roots are less disturbed when the grave is dug, and the 

remains are in closer association with the plant roots.  Thus, carrion deposited in shallow 

subsurface locations may decompose more quickly when local foliage has time to 

reoccupy the burial location.  Based on these findings, it is clear that burial depth is an 

essential extrinsic consideration in estimation of the postmortem interval for subsurface 

depositions. 
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Aquatic Locations 

Bodies of water where human remains can be discovered vary “radically with 

respect to temperature, depth, salinity, oxygenation, or current.  Features of shores, 

bottoms, and life forms are also variable (Haglund and Sorg 2002b:202).”  This 

variability of water environments will differentially affect the remains in question.  The 

discussion here is limited to the changes associated with all or fresh water depositions, as 

freshwater was the context of interest in this analysis. 

Rodriguez (1997:461) writes that the decelerated rate of decay for bodies in water 

is primarily a result of cooler temperatures and less insect activity.  A body with air in the 

lungs may float initially but is likely to sink in fresh waters as the lungs depress (Haglund 

and Sorg 2002b; Rodriguez 1997; Spitz 2006).  Clothing with trapped air can assist in 

flotation of the body and prolong the interval before the body sinks (Spitz 2006).  After a 

body has sunk below the waterline, it begins the normal processes of decomposition.  The 

buildup of putrefactive gases within the gastrointestinal tract and lungs will cause the 

body to float and eventually resurface (Rodriguez 1997).  When putrefaction occurs, “gas 

may accumulate and expand the volume of body cavities to a point where internal 

pressure overcomes external water pressure, the body expands, and the body becomes 

buoyant (Haglund and Sorg 2002b:205).”  A bloated corpse can become so buoyant that 

putrefaction has been known to cause flotation even when the body is rigged to an 

additional 100 pounds (Spitz 2006).   

The length of time needed for the body to resurface is primarily dependent on the 

temperature of the surrounding water.  Warm temperatures will cause a body to float 
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relatively quickly and cool temperatures will prolong the interval needed to accumulate 

enough decompositional gases to cause flotation (Haglund and Sorg 2002b).  Spitz 

(2006:853) and Rodriguez (1997:461) claim that flotation in warm water will occur 

within 2 to 3 days, while flotation in cold water may take weeks or months.  Water 

temperature declines with depth and so the rate of decay is also affected by the depth of 

the carcass within a body of water (Rodriguez 1997).  This association between water 

temperature and flotation is a direct reflection of the importance in temperature over time 

as it affects the rate of putrefactive processes. 

Bodies often float in the position where the face, stomach and appendages are 

submerged, while the back and buttocks may be exposed above the water line (Haglund 

and Sorg 2002b; Rodriguez 1997; Spitz 2006).  Extensive bloating of the abdomen can 

also cause the body to float on its back with the bloated abdominal region protruding 

above the water line (Haglund and Sorg 2002b).  The position of the remains is 

paramount to the decomposition process, as it often leads to different portions of the body 

being exposed to different environmental factors.  Bodies floating in water will present 

typical indicators of decomposition, such as bloating and insect infestation (Mann et al. 

1990), yet the taphonomic affects that manifest and their location on the body is 

dependent on the position of the body.  Underwater portions of the body are likely to 

exhibit lividity (Rodriguez 1997), fungus growth, extensive skin slippage (Spitz 2006), 

and are most susceptible to postmortem abrasions and scavenging by underwater species 

(Haglund and Sorg 2002b).  Above the water line, sun exposure can cause the skin tissue 

to desiccate and mummify if the environment is dry (Haglund 1993; Spitz 2006).  
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Additionally, tissues exposed above the water line are likely to become colonized by 

Dipteras (Rodriguez 1997), although it has been shown that the larvae can migrate down 

below the water line once they have been established on the corpse (Haglund and Sorg 

2002b).   

As decomposition continues and putrefactive gases are released, the body 

eventually loses its buoyancy and again sinks to the bottom of the water source.  Here, 

the cadaver may be in a position to undergo adipocere formation or aquatic scavenging.  

Adipocere formation typically occurs in warm waters but has also been known to occur in 

surface and subsurface burials (Fiedler and Graw 2003; Manhein 1997).  Where it was 

once thought that adipocere only formed in moist environments, it has since been found 

that a body’s fluids may provide enough moisture to facilitate the development of 

adipocere (Manhein 1997:472-473).  Mellen et al. (1993) found that in warmer waters, 

adipocere developed within two to three months, whereas in cooler waters, it developed 

within twelve to eighteen months.  Adipocere severely retards the rate of decomposition, 

yet there is no clear set of circumstances under which adipocere will form.   

Aquatic scavenging can play an important role in the removal of soft tissue within 

aquatic environments (Haglund 1993).  Skeletonization in water roughly mirrors that of 

terrestrial based remains, whereas disarticulation of underwater remains creates a 

different pattern than that of terrestrial carrion.  Generally, the body parts that are first to 

disarticulate are the “hands and wrists, mandible, and cranium,” followed by “the lower 

legs, forearms, and upper arms (excluding the pectoral girdle; Haglund 1993:811).”  

Clothing tends to impede the disarticulation process for bodies in water.  Differential 
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disarticulation patterns for water and terrestrial environments reflect the different 

environmental forces interacting with the carcass. 

The decomposition profile for aquatic depositions hints at a unique and complex 

set of factors acting upon the remains.  It is clear that anthropophagy and temperature are 

important factors in setting the tempo for human decay, yet these variables are 

manipulated quite differently in water environments than what may be found in terrestrial 

settings.  Of particular interest is the differential exposure of submerged and air exposed 

portions of the remains.  While this study’s sample of aquatic depositions was small, 

taphonomic trends were identified and compared with the trends discussed here.  

 

Indoor Locations  

Anthropological studies have been conducted on bodies decomposing in enclosed 

repositories but research on this environment is relatively uncommon (i.e., Galloway et 

al. 1989; Goff 1991; Schroeder et al. 2002; Voss et al. 2008).  Galloway and colleagues 

(1989; Galloway 1997) performed a retrospective study on human decay in southern 

Arizona, where they identified varying patterns of decomposition between indoor and 

outdoor environments.  The authors ascribed the differing patterns of decay to the 

contrast in moisture between closed and open settings.  They discovered that open 

environments in Arizona are characterized by hot, arid conditions that often lead to rapid 

bloating and long periods of tissue desiccation and mummification.  Due to the heat and 

aridity, outdoor finds were often preserved for longer periods and hence lingered longer 

in the later stages (Galloway et al. 1989).  Bodies deposited in closed structures decayed 
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more slowly during the initial phases of decomposition, but progressed to skeletonization 

rather quickly.   

Cadavers discovered in outdoor settings displayed bloating between the second 

and fifth days, with skeletonization not occurring until approximately eight months 

postmortem (Galloway et al. 1989).  In contrast, enclosed remains usually exhibited 

bloating between the third and seventh days, but often achieved skeletonization by the 

fourth month postmortem.  One case of indoor decomposition during the late summer 

demonstrated that over fifty percent of the body became skeletonized within a mere seven 

days (Galloway et al. 1989).  The authors noted that enclosed remains were less prone to 

mummification but rather, commonly underwent “moist decomposition,” which 

facilitated the expedited exposure of bones in the later part of the process (Galloway et al. 

1989: 613, 615).  When mummification did occur, it took approximately two weeks 

longer than outdoor mummification (Galloway 1997).  

There is also some question as to how accessible bodies are to insects when they 

are located within structures and containers.  Haskell (2006:170-171) notes that there are 

several problems associated with estimating insects’ contribution to decomposition 

within enclosed structures.  If the structure is well sealed, the decomposition odors that 

attract insects may never emanate outside of the structure.  If insects do detect the odors 

of decay, the structure may prevent them from being able to access the body.  When 

insects have successfully accessed the body, there may be differences in temperature 

between the enclosed and the outside environment.  This temperature disparity as well as 
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restricted access to the remains could lead to differences in the rates of insect 

development and thus introduce error into the estimation of the postmortem interval.   

Goff (1991) performed a comparative study on human remains found indoors as 

opposed to outside in Hawaii, where he focused on the species of insects that were shared 

by both habitats.  Goff also found that insects’ access to remains caused a disparity in 

decomposition rates between indoor and outdoor environments.  Beetles were almost 

always absent from indoor settings, which resulted in a different pattern of species’ 

colonizations and successions for the two environments.   

Goff (1991) revealed that closed environments displayed the most diversity of 

insect species during the earlier decomposition stages (6 – 7 days), followed by a rapid 

decline.  The outdoor carrion’s colonization pattern differed from the indoor, in that 

outdoor carcasses possessed the most insect diversity amid the eighth through tenth days 

and retained a greater level of diversity throughout the remainder of the study (twenty 

one days).  This may be attributed to the increased accessibility of outdoor deposition and 

the added presence of beetles, which tend to colonize remains during and after the 

“bloated” stage. 

Goff (1991) also found that there were a greater number of fly species associated 

with indoor decomposition habitats, but that there was a greater number of species 

diversity, particularly beetle species, found within the outdoor decomposition habitats 

(Goff 1991).  These results are directly oppositional to observations made from a case 

study in Germany, where a mummified male was discovered in his home and was almost 

completely skeletonized in less than five months (Schroeder et al. 2002).  In this case 
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study, the carcass was covered in beetles, their larvae, and empty larval casings.  The 

body had rapidly become skeletonized, and the bones and mummified dermis possessed 

multiple defects that were caused by the necrophagous beetles and their larvae.  The 

apartment conditions were conducive for mummification; the windows were closed and 

the heating system was turned to high.  Mummified dermal tissue can prevent the 

infiltration and colonization of fly larvae, which tend to thrive on warm, humid soft 

tissues (Galloway 1997; Galloway et al. 1989).  A small number of dead adult flies and 

empty pupae casings were discovered in the home, but there were not enough to imply 

that the flies had substantially contributed to the body’s accelerated decomposition.  In 

contrast, beetles possess strong mouthparts that are conducive for penetrating and 

consuming tough, mummified skin and even bone, and were likely the primary catalyst 

for the body’s accelerated rate of soft tissue removal (Schroeder et al. 2002).  

The results from Goff (1991) and Schroeder et al. (2002) research were 

consequences of the accessibility of indoor finds to flies and beetles, the primary insects 

involved in cadaver decomposition.  Although there was no quantification, Goff (1991) 

noted that there seemed to be larger numbers of insects associated with outdoor cadavers, 

and that bodies found on the sixth floor or above were not affected by insect activity 

(Goff 1991:749).  This study demonstrates that enclosed remains are less accessible to 

insects and virtually inaccessible to beetles, whereas the observations made by Schroeder 

et al. (2002) indicate that beetles do play a large role in the removal of soft tissue for 

enclosed carrion.  The disparity between the two studies may result from the very 

different environments where each study took place, and also the case study may not be 
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representative.  However, both analyses indicate that environmental conditions associated 

with decomposition in differential locations likely leads to a disparity in the numbers of 

insects, rates and patterns of colonization, and the rates of decomposition.  

The contribution of animal scavenging to indoor decomposition has not been 

quantified.  Yet, domesticated pets that have access to human remains will consume soft 

tissue and accelerate the decomposition process (Galloway et al. 1989; Perper 2006; 

Steadman and Worne 2007).  Steadman and Worne (2007) looked at a case study of two 

large pet dogs that were locked away in the home of a woman who lived and died alone.  

The woman’s body remained in the home with the dogs for approximately 4 weeks.  

When she was discovered the only remaining biological remains were her hair, a portion 

of the skull and splintered fragments of long bones.  Importantly, there was no evidence 

of decomposition odors or fluids in the carpet.  In spite of the presence of dog food, it 

appears that the dogs consumed her flesh fairly soon after death.  Interestingly, the 

authors found that while canid scavengers in outdoor settings may strew disarticulated 

remains over a large geographic area, canine scavenging in the home was confined to a 

small area in one room.  It was of interest to see how frequently the phenomenon of 

scavenging by pet dogs was observed for depositions within enclosed spaces.  

Understanding the contribution of canine and feline scavenging towards enclosed space 

decomposition could also prove useful in estimating the postmortem interval for people 

who have died alone in their homes and whose bodies have been partially consumed by 

their pets. 
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There is a need for more research that quantifies the contribution of animals, 

insects and moisture to decomposition within enclosed locations.  Mann and colleagues 

(1990) noted that insects are responsible for eliminating the majority of soft tissue and 

consequently, insects’ access to remains was rated as the second most important variable 

in estimating the rate of decay.  In the Galloway et al. study, authors noted that insect 

activity was influenced by “location of the body, seasonal weather, and accessibility of 

the soft tissues (1989:607).”  They found that indoor deposition often led to a more moist 

decay than would be experienced outdoors.  Although Galloway et al. (1989; Galloway 

1997) addressed the differing rates of decay between open air and closed locations, 

whether or not insect access was lessened or heightened for indoor locations was not 

addressed.  Galloway et al. (1989; Galloway 1997) found accelerated rates of decay for 

enclosed remains, whereas Goff (1991) did not address the differential rate of 

postmortem transformation.  However, Goff’s (1991) study suggests that insects do not 

easily access enclosed carrion, and hence the pace and pattern of the decomposition 

process is altered.  Although only a case study, the Schroeder et al. analysis indicates that 

the types of insects that can access indoor remains is geographically specific.  The 

accessibility of indoor bodies to insects and consequently the prominence and effects of 

insect activity in the decomposition process of protected bodies remain unknown.  This 

thesis addressed the question of if and how insect and animal activity affect indoor 

decomposition by examining the prevalence of anthropophagy for enclosed locations.  
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Vehicle Locations 

The disparity in insect access and temperature between enclosed vehicle and 

outdoor carrion environments (Haskell 2006) must also be considered.  For a body 

contained within a vehicle on a sunny day, temperatures inside the vehicle may be 20˚ C 

higher than the outside temperature (Haskell 2006:170).  Voss and associates (2008) 

performed an experimental analysis using pig carrion to compare the rates of decay 

within vehicle environments to those in a nearby surface location in Australia.  For this 

study, five stages of decomposition were utilized.  These stages basically corresponded 

with Bass’ (1997) stages.  However, Bass’ advanced stage was separated into “wet 

decomposition “ and later, “dry decomposition (Voss et al. 2008:24).”  The authors 

measured the temperature of the carrion throughout the experiment and compared the 

PMI days needed to achieve each stage.  

Voss and colleagues’ findings suggest that bodies deposited in the driver’s seats 

of sealed vehicles decompose at a faster rate than outdoor surface depositions.  They 

discovered that increased vehicle temperatures catalyzed the rate of decay so that “the 

overall progression of decomposition through the identified physical stages was 3 – 4 

days faster within the vehicle environment than in a surface decomposition situation 

(Voss et al. 2008:30).”   

Insect succession patterns in vehicles mirrored that of outdoor settings, where 

flies (Calliphoridae) were first to occupy the remains and beetles (Coleoptera) were 

subsequent to fly colonization.  However, there were differences in the timing for insect 

succession between the two settings.  Calliphoridae were found interacting with outdoor 
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carrion within the first hour of unveiling whereas flies were not seen in contact with 

vehicle carrion until 16 – 18 hours after deposition (Voss et al. 2008).  Correspondingly, 

Coleoptera were found on outside cadavers when they were undergoing the bloated stage 

and their larvae were identifiable during the wet stage of decay.  For carrion located 

within vehicles, beetles did not obtain access to the remains until they were within the 

wet stage of decomposition.  These observations demonstrate that insects can access 

bodies deposited within a sealed vehicle.  The authors presumed access through air vents 

(Voss et al. 2008:30).  Yet, the delayed colonization of carrion in vehicles indicates that a 

vehicle does present a human influenced barrier that insects must manipulate in order to 

gain entry. 

The Voss et al. (2008) study suggests that cadavers deposited within vehicles 

decompose at an accelerated rate due to increased temperatures, even though insect 

infestation is delayed.  Associated with this increased rate of taphonomic change, the 

bloat and dry phases lasted for a shorter period of time.  However, the wet decomposition 

phase was roughly paralleled in time span between outdoor and vehicle cases.  Voss et al. 

(2008) found that the wet phase was when insect activity was most prevalent and this is 

also when the temperature of the carcass was at its highest.  They concluded that the 

temperature of the body rather than ambient temperature “was a major contributing factor 

driving this stage (Voss et al. 2008:30).”  This experiment suggests that vehicles 

constitute a unique environment due to their associated high temperatures; yet the 

challenges presented to insects that wish to access the remains parallels those identified 

for indoor settings.  For the purpose of this analysis, indoor and vehicle depositions were 
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grouped together based on the similarity in epidemiological barriers to the remains in 

conjunction with small sample sizes for vehicular depositions.  While grouping of these 

two contexts has the potential to confound some factors, it also allowed for a more robust 

statistical exploration of the multiple factors that set the tempo for decay within enclosed 

settings. 

 

Recapitulation 

Most research that have centered on estimating the rate of decay have only 

focused on extrinsic and intrinsic factors related to outdoor, terrestrial depositions.  

Importantly, all of the claims reviewed here are not quantified.  There is no predictive 

value and there are no error rates, which could raise issues of admissibility for courts of 

law (Christensen 2004; Christensen and Crowder 2009).  Further, while Bass (1997) 

provides a comprehensive description of the general changes that transpire with 

decomposition, they are based on alterations that occur in the outdoor environment of 

Tennessee.  What does this say about the postmortem interval for bodies that decompose 

in sheltered environments or other geographical settings?  A review of the literature 

shows that there is a scarcity of research on the decomposition of remains found in 

automobiles, houses, or other structures (Galloway 1997; Galloway et al. 1989; Goff 

1991; Schroeder et al. 2002; Voss et al. 2008).  Yet, an analysis of the Nebraskan autopsy 

records show that many people who die and go undiscovered for any length of time often 

expire in their homes.  Clearly, there is a great need for incorporation of an 

anthropological model in studies of unaccompanied deaths as well as environmentally 
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specific data on decomposition in enclosed environments.  Legal requirements necessitate 

quantification of the potential or observed error inherent in any method that is to be used 

in cases of forensic significance (Christensen 2004; Christensen and Crowder 2009; 

Grivas and Komar 2008), and so future trajectories should place emphasis on statistical 

methods that can meet these requirements.  Anthropologists’ holistic approach places 

them in a strong position to provide such a comprehensive model. 

This study employed an anthropological model to look at unaccompanied deaths 

and their subsequent postmortem intervals.  The purpose of this project was to establish 

the intrinsic, extrinsic and epidemiological factors that most influence the rate of 

decomposition in enclosed spaces.  Outside surface, subsurface and aquatic finds were 

limited in this study, but they were analyzed for factors that affect the rate of 

decomposition within each subset.  For enclosed locations, this study identified trends in 

temperature and how it affects the decay process in Nebraska.  The question of whether 

necrophagous organisms’ have access to remains was investigated to determine if this 

variable could be used to predict rates of decomposition, and to assess whether the 

presence of insects affects the rate of decomposition differently in enclosed locations.   

The results were compared to Bass’ stages (1997) of decomposition to assess the 

appropriateness of this model to the traditional decomposition stage approach.  In 

addition, local weather data were used to calculate the accumulated degree days for each 

case.  ADD for this study are defined as the sum of all daily mean temperatures above 0˚ 

C that comprise the postmortem interval time span (Megyesi et al. 2005).  Ranges of 

ADD were paralleled with rates of decomposition discovered in the data and were used to 
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develop a predictive model for the quantified rates of decomposition for estimation of the 

postmortem interval in enclosed locations.  Ultimately, this research aimed to implicate 

ADD as a way to provide standardization to the model that enables it to be mobilized 

globally. 
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Chapter 3 

Materials and Methods 

Research Setting 

 The data were collected at the Nebraska Institute of Forensic Science, Inc. 

(NIFS), located in Lincoln, Nebraska, in the central region of the state.  It is a nonprofit 

institution that performs forensic autopsies and other death investigation services to a 

large part of Nebraska.  The NIFS serves as the Forensic Pathology division of the 

Coroner’s Office in Lancaster County (which encompasses Lincoln) and is affiliated with 

the Department of Pathology, Creighton University School of Medicine in Omaha, 

Nebraska, as well as several other universities located outside of the state (Nebraska 

Institute of Forensic Sciences 2003).  The institute provides certification programs, 

annual seminars and a variety of internships aimed at training members of the 

medicolegal community, with a particular focus on recruitment of qualified individuals 

from minority groups and women.  Their emphasis on teaching and training is manifested 

through an abundance of opportunities in research initiatives and service opportunities at 

the institute as well as among many other like-minded organizations with which they 

have established affiliations.  The author was granted an internship at NIFS as an 

opportunity to engage in training and research for the production of a Master’s thesis. 
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Materials 

Research on unaccompanied deaths was conducted retrospectively.  The author 

and Casey Anderson, B.A collected the data.  The data were collected from various 

formal documents, such as police and autopsy reports, as well as entomological and 

anthropological records and police scene photographs.  Most data were collected directly 

from the autopsy and police reports, and were supplemented by police scene photographs 

and specialists’ reports, when available.  The retrospective nature of the data presupposes 

that some data are missing and as a consequence sample sizes vary among analyses.   

The data consisted of eighty-six individuals who died in variable environments 

within the state of Nebraska and who were autopsied between the years of 2003-2008.  

The individuals used for this study were selected based on documentation that produced 

an estimate of the PMI, with the expectations that they will yield information about the 

rate of decay.  The postmortem interval was estimated from the time decedents were last 

known to be alive until when they were discovered.  Consequently this range may be an 

over-approximation for most cases.  When possible, this interval was refined based on 

supplementary information. 

 

Protocol Description 

The full protocol that was used to collect data included in this analysis is in 

Appendix A.  The attached protocol is extensive and not all of the original variables were 

pertinent to the data analysis presented in this thesis (Kimmerle 2008).  This protocol is 

part of ongoing research into decomposition in other geographical areas conducted by the 
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Bioarchaeology and Forensic Anthropology Laboratory at the University of South 

Florida.  Table 3.1 summarizes the variables used in this study according to the model 

employed.  The protocol was designed to elicit information on the epidemiology of 

solitary deaths and ask questions about the decedent demographics and perimortem 

circumstances (cause and manner of death) as well as about factors that affect the rate 

and extent of taphonomic change (extrinsic and epidemiological taphonomic factors), and 

the state of the remains when they were discovered (intrinsic taphonomic effects).   
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Table 3.1—Anthropological Model for Research in Human Decomposition.  
Intrinsic Factors 
(Biological) 

• Age, sex, ancestry, weight 
• Decomposition stage (Bass 1997) 
• Skeletonization  
• Biochemical changes 

 
  

 
 
 
 
 
 
 
 
 
 
• Cause of death 
• Injuries 
 

 
 

 
• Algor, livor and rigor mortis 
• Skin slippage and bullae 
• Marbling  
• Bloating 
• Green discoloration 
• Purge fluid 
• Mummified skin  
• Adipocere 
• Decomposition odor 
• Mold growth 
• Decompositional fluid stain 
• Postmortem blood clotting 
• Brain, ocular and organ decomposition 

 

Extrinsic Factors 
(Environmental) 

• Context (i.e., outdoor near-surface) 
• Environment 
 
 
 
• Time (days) 
• ADD (temperature over time) 
 

 
• Location 
• Sun exposure  
• Temperature, Season 
• Insect or animal scavenging 

 

Epidemiological 
Factors 
(Cultural/ 
Behavioral) 

• Manner of death 
• Environment (of human influence)  
 
 
• Context (of human influence, i.e., 

indoor) 
• Container (i.e. carpet, blanket) 
• Deposition surface  
• Clothing 
• Postmortem modification (of 

human influence) 
• Postmortem movement of body  
• Person who discovered the body 
• Burial factors (of human influence) 
• Embalming, clandestine burial 

 
 

• Type of weapon used 
• Type of structure (i.e., hotel room, 

vehicle) 
• Windows open/closed 
• AC/Heat (also type of device used) 
• Location (within home or vehicle) 
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Intrinsic 

 Data were collected on demographic factors, such as sex, age, estimated ancestry, 

and whether or not the subjects were obese.  Demographic data were collected to reveal 

trends in the demography of persons who tend to die alone and go undiscovered for 

extended lengths of time.  Ancestry was originally recorded by police officers and the 

pathologist at NIFS and may not always accurately reflect an individual’s self-perception 

of ancestry.  The protocol also asked for the cause of death and whether or not any 

injuries were incurred around the time of death.  Perimortem injuries were considered as 

a potentially important variable in the assessment of the role that insect necrophagy plays 

in the rate of soft tissue removal. 

In the section labeled “Decomposition Stage Data,” each set of remains was 

classified into the stages of decomposition outlined by Bass (1997).  Bass’ stages were 

constructed based on his experience with decomposing remains in an outdoor 

environment in Tennessee, and some of his observations differ from those found in this 

data set.  Also, Bass’ (1997) stages do not reference some of the earlier changes, such as 

rigor mortis and lividity.  Therefore, the data collectors chose whatever stage “best fit” 

the description of the body.  In addition, the assignment of each observation to one of the 

phases was supplemented by presence/absence questions that considered individual 

taphonomic effects, such as mummified tissue.   
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Extrinsic 

 The protocol was geared towards revealing information related to the role that 

necrophagous activity plays in taphonomic change (refer to “Scavenging Activity” in 

Appendix A).  These questions centered on the types of animals and insects that had 

access to human remains in each environment.  The species of insects were recorded 

when the information was available.  This consideration of necrophagous activity was 

intended to facilitate the refinement of the postmortem interval estimation as well as 

enable an analysis of the disparity in insect activity among variable environments.  

 The times and dates of when a person was last known to be alive and when they 

were discovered were recorded as a way to estimate the postmortem interval.  

Temperature and climatological data for the PMI were recorded in the protocol (refer to 

“Temperature Data” in Appendix A).  When noted, police reports were used to find 

information on the temperature of the scene at the time of when the body was discovered.  

To supplement this portion of the research, the average temperatures for each day within 

the PMI were derived from local weather stations.  Weather data from local weather 

stations were obtained from the US Department of Commerce’s National Oceanic and 

Atmospheric Administration’s (NOAA) National Climatic Data Center (NCDC), “the 

world’s largest active archive of weather data (National Climatic Data Center 2008).”  

NCDC’s weather data are quality controlled and represent the best possible external 

source for weather data.  These data were used to quantify the accumulated degree days 

for the PMI. 
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Epidemiological 

 The protocol recorded the manner of death and also elucidated information on the 

context of the burial location.  This section addressed whether or not the remains were 

buried, what type of environment they were found in, what type of surface they 

decomposed on, and how exposed or covered the body was (refer to “Burial Factors” in 

Appendix A).  The section titled “Indoor Factors” asked questions that were specific to 

an indoor environment and that would affect the temperature and exposure of remains to 

outside elements.  Epidemiological questions also addressed body position, types of 

materials that made up the clothing, and how complete the remains were.  These 

questions were considered important in understanding the availability of the remains to 

necrophagous activity, how greatly the body was exposed to environmental factors, and 

the relative degradation of clothing, which relates to the length of the postmortem 

interval.  

Collectively, the protocol questions were used to identify what variables were 

useful in analyzing the demographic profile of people who die alone, exploring the 

variation in decomposition, and for predicting the accumulated degree days for enclosed 

environments. 

 

Variables 

The following is a description of all the variables used in the analysis, which is 

only a portion of the total amount of data collected.  Categorization for who found the 

body included: friend, spouse, neighbor, police, stranger, landlord, family and other.  As 



 

 

    89 

a way to describe the composition of the sample, the ages (in years) were divided into six 

categories: persons under the age of twenty, twenties, thirties, forties, fifties, and sixty or 

older.  These age categories were selected as standard practice in paleodemographic 

research using skeletal data.  However, the actual age distribution was used to test the 

relationship between manner of death and age.  To test the relationship between cause of 

death and age, age categories of people within 30 – 49 years of age and people over 50 

years of age were used.  These categories were selected because they reflected the most 

common ages for death by drugs/alcohol and heart disease, which were the causes of 

death under investigation, and of particular interest in this research project. 

The multifarious causes of death were separated into seven categories: drug or 

alcohol; infectious disease; carcinoma; heart disease; disease of the visceral organs; 

trauma; and carbon monoxide, carbon dioxide or fire related deaths.  A person’s death 

may be attributable to multiple causes, which may be physiologically linked in cause and 

effect and may be either acute or chronic contributors to cessation of life (Perper 2006; 

Adams et al. 2006).  It can also be difficult or impossible to distinguish which 

physiological distress directly caused a person’s death when there are multiple indicators 

and any one of which could have brought about the death, such as when a person 

sustained multiple injuries or suffered from both heart and lung disease.  The purpose for 

categorizing the cause of death was to understand human behavior.  Therefore, drug and 

alcohol related deaths were prioritized over all other categories.  Infectious disease was 

prioritized over lung or heart disease, and heart disease was prioritized over all other 
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visceral organ diseases.  Manners of death employed in this analysis included: homicide, 

suicide, accidental, natural and undetermined. 

In this study, autopsy recordings of actual stature and estimated weights were 

used to calculate estimations of body mass indices (BMI).  The body mass index is a 

basic index that was used as an approximation of size based on proportions of weight to 

height, and was calculated with the formula below (3.1; Mielke et al. 2006:252).  

 

(3.1) 

(weight in kilograms)/(stature in meters) ² =BMI 

 

The purpose of including height, estimated weight and estimated BMI was to understand 

size and how size varies with decomposition rates in varied contexts.  

The deposition of a corpse can provide information on the circumstances that led 

to one’s death as well as establish environmental parameters that set the tempo for the 

rate of decomposition.  Six main contexts of deposition were identified: outdoor surface, 

outdoor subsurface, submerged, within a vehicle, indoors, and exhumed/embalmed.  An 

“enclosed context” referred to any deposition where the body was contained within a 

structure, and therefore enclosed contexts included both vehicles and buildings for this 

analysis. 

As previously discussed about the protocol (Appendix A), investigators recorded 

each level of decomposition based on the description of Bass’ stages that best fit the state 

of the remains (refer to Table 2.2).  The postmortem interval was measured in days as a 
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continuous variable and was always rounded up to the next whole day when there was 

overlap into part of a day.  The PMI was also categorized into a time scale that reflects 

the time ranges associated with each decomposition stage in Bass’ model.  In this study, 

one modification to his PMI ranges was implemented; where Bass (1997) assigned the 

“dry” phase to a time range of one month to one year, this study broadened this PMI 

stage to any postmortem interval that was greater than one month.  Therefore, the PMI 

categories were: first day, first day to first week, first week to first month, and beyond the 

first month. 

The method for calculation of accumulated degree days was followed using 

Megyesi et al. (2005).  Average daily temperature data for each postmortem interval were 

derived from NOAA’s NCDC database and were then transformed into degree days.  A 

degree day was defined as the daily average temperature of zero degrees Celcius or 

above.  It was assumed that decomposition almost stops at zero degrees Celsius and so all 

daily temperatures at or below zero degrees were manually changed to zero.  ADD were 

calculated by adding the degree days for each day represented within each PMI.  

The variables considered for prediction of decay rates are listed in Table 3.2.  All 

taphonomic effects were dichotomously categorized as present or absent except for 

skeletonization, which was categorized as ≤25.0%, ≈50.0%, ≥75.0%, or ≈100.0% 

skeletonized.  All extrinsic variables were categorized dichotomously as present or absent 

except for environment during the PMI.  Environment was categorized as: public space, 

private residence, along roadside, wooded area/field, hotel room, railroad tracks or other.  

The seasons were categorized dichotomously as spring/summer and fall/winter.   
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For burial factors, the rooms in the structure that were considered were the: 

basement, bedroom, bathroom, kitchen, living room, attic, garage and other.  The 

surfaces of deposition identified were: dirt, mud, carpet, bedding, tile, linoleum, water, 

wood, porcelain, car seat/recliner/couch, metal, cement and combination.  The containers 

included: blankets, caskets, carpet, vehicles and other.  The percentage of body covered 

by clothing was categorized as: ≤25.0%, ≈50.0%, ≥75.0%, or ≈100.0%.  The use of AC 

or heat and whether or not the windows were open or closed were categorized 

dichotomously.   
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Table 3.2—Intrinsic Variables, Extrinsic Variables and Burial Factors Evaluated 
for Each Context.  
Intrinsic Variables Extrinsic Variables Burial Factors 

 
• Rigor Mortis • Environment • Room in Home 
• Livor Mortis • Canine Scavenging • Surface of Deposition 
• Skin Slippage • Rodent Scavenging • Container 
• Marbling • Fly Colonization • % of Clothing 
• Bloating • Beetle Colonization • Windows Open/Closed 
• Green Discoloration • Seasons during PMI • Use of AC/Heat 
• Purge Fluid • ADD - 
• Mummified Skin • PMI - 
• Adipocere - - 
• Decomposition Odor - - 
• Postmortem Blood Clot - - 
• Soil Stain - - 
• Brain Liquefaction - - 
• Skeletonization - - 
• Organs Examinable - - 
• Height - - 
• Estimated Weight - - 
• Estimated BMI - - 
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Sample  

The data consisted of 86 individuals who died in variable environments in 

Nebraska.  European Americans composed 88.4% (76/86) of the sample, while 11.7% 

(10/86) were descendents from other ancestral groups (Table 3.3).  This sample included 

both males and females of various ages, although most were adults.  There was a greater 

than 2:1 ratio for males to females, composed of 73.3% (60/86) males and 26.7% (23/86) 

females.  Figure 3.1 demonstrates the age range for the entire sample.  There were 82 

adults and 4 subadults, whose ages ranged from two months to ninety-one years, with an 

average age at death of forty-seven years (s.d.=17.20 years).  The subadults in the sample 

included a seven year old, a fourteen-month and a two month old.  
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Table 3.3—Sample Sex and Ancestry. 
Ancestry Males Females Total 
European-American 65.1% (56/86) 23.3% (20/86) 88.4% (76/86) 
African-American 3.5% (3/86) 0 3.5% (3/86) 
Hispanic 2.3% (2/86) 1.2% (1/86) 3.5% (3/86) 
Asian 0 1.2% (1/86) 1.2% (1/86) 
American-Indian 2.3% (2/86) 0 2.3% (2/86) 
Bangladeshi 0 1.2% (1/86) 1.2% (1/86) 
Total 73.3% (63/86) 26.7% (23/86) 100% (86) 

 
 

Figure 3.1—Age Distribution of Complete Sample. 
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Statistical Methods 

Demographic Profile of All Unaccompanied Deaths  

To explore the relationship between manner of death and sex, two Pearson Chi-

squares of independence were employed: one that only included natural and accidental 

deaths, and one that only included homicidal and suicidal deaths in conjunction with 

Fisher’s Exact Test.  To test for a difference in age structure at death between males and 

females, a Mann Whitney-U test was used.  To test for a difference in age structure at 

death by manner of death, a Mann Whitney-U test was used.  For this test, all manners of 

death except for natural were combined.  To test for a relationship between cause of death 

and sex, a Pearson Chi-square of independence that only included heart disease and 

drug/alcohol related deaths in conjunction with Fisher’s Exact Test was employed.  A 

Chi-square of independence was used with Fisher’s Exact Test to test whether or not age 

is independent of cause of death; this test only considered people in their thirties and 

forties and people over the age of 50 who died from drugs or alcohol and heart disease. 

Chi-squares of independence were used to explore the relationship between 

manner of death and certain causes of death.  Suicidal and accidental deaths were lumped 

together and compared to natural deaths to investigate the relationship between drug and 

alcohol related deaths and manner of death.  A Chi-square test of independence with a 

Fisher’s exact test was used to test the relationship between traumatic deaths and 

homicidal and suicidal manners of death.  The demographic profile, causes and manners 

of death were also described for each context.  Differences in PMI among manners of 

death were tested with a nonparametric Kruskal-Wallis test. 
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Taphonomy, the Postmortem Interval and ADD 

To explore decomposition and time within the entire sample, the frequencies of 

each stage of decay and the PMI categories were explored.  Descriptive statistics for PMI 

days and ADD were presented for each stage of decay.  A Spearman’s correlation was 

used to test how well Bass’ model predicts the PMI for the entire sample.  

 

Outdoor Near-Surface Subsample 

 The outdoor near-surface sample consisted of eight decedents.  Descriptive 

statistics were provided for the postmortem interval.  The frequencies of cadavers for 

Bass’ decomposition stages and postmortem interval ranges were described.  Individual 

taphonomic effects as well as prevalence and types of anthropophagy were identified and 

described by stage of decomposition and by time range.  

 

Outdoor Subsurface, Aquatic and Exhumed Subsamples 

The outdoor subsurface sample only consisted of two cadavers.  There were three 

aquatic cases and three exhumed bodies.  Exhumed bodies were not analyzed. 

Additionally, each decedent’s postmortem intervals and associated taphonomic profiles 

were described as case studies.  

 

Enclosed Subsample 

In 79.31% (69/87) of the cases reviewed for this analysis were found within 

enclosed environments.  An “enclosed context” referred to any deposition where the body 
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was contained within a structure, and therefore an enclosed context included both 

vehicles and buildings for this analysis.  Enclosed environments represented the largest 

sample and the thrust of this analysis and therefore merited further description.  The 

causes and manners of death represented in this sample were discussed.   

The relationship between rate of decay and season of deposition was explored 

with an odds ratio.  The odds ratio was used to show the likelihood of decomposition 

before discovery in the spring/summer, when compared to the fall/winter.  The frequency 

data were organized into a cross-tabulation and the following odds ratio formula was 

applied: (ad)/(bc).  

 The relationship between PMI, ADD and decomposition stages were explored 

with Spearman’s correlations.  Bass’ model was explored within the enclosed context 

and the frequencies for each stage of decomposition and associated postmortem interval 

ranges were explored.  Descriptive statistics for each stage’s postmortem interval and 

ADD were provided.  A Spearman’s correlation was used to test how well Bass’ model 

fits with this sample’s PMI.   

 Nonparametric Kruskal-Wallis tests were implemented to test for significant 

differences in PMI days and ADD among decomposition stages.  To determine which 

stages were significantly different from which, Mann-Whitney U tests were employed.  

All independent variables were explored to identify factors that may be useful in 

creating linear multiple regressions that predict PMI and ADD.  To determine the profile 

of taphonomic change for enclosed environments, individual taphonomic effects and their 

relative frequencies were analyzed by stage of decomposition.  Intrinsic taphonomic 
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effects and their frequencies were also described by postmortem interval stages to begin 

looking for effects that may be good predictors of the PMI and ADD.   

Odds ratios were used to determine the likelihood of the presence of certain 

intrinsic taphonomic effects after the first week of the PMI, when compared to the 

absence of intrinsic effects.  Odds ratios were calculated for the presence of: marbling, 

bloating, green discoloration, mummification of skin, and brain liquefaction.  The 

frequency data were organized into a cross-tabulation and the following odds ratio 

formula was applied: (ad)/(bc).  

 Subsequently, Spearman’s correlations were utilized to determine if there were 

significant relationships among taphonomic effects, intrinsic characteristics of individuals 

during life, PMI days and ADD, with the purpose of identifying intrinsic factors that may 

be good predictors of PMI and ADD.   

 Extrinsic and epidemiological factors and their frequencies of occurrence were 

then explored to look for factors that potentially affect the rate of decompositional 

change.  Spearman’s correlations were used to determine if there are extrinsic and 

epidemiological variables that may make good predictors for PMI and ADD.   

All continuous variables that were considered for model building were tested for 

normality with the Shapiro-Wilk test.  PMI days were not used for model building as they 

were not normal and transformations were not successful.  ADD were transformed to the 

log 10 of ADD (LogADD) and served as the dependent variable.  Although ADD were 

transformed, the aforementioned correlations were presented to demonstrate that there is 

a real relationship among the potential independent variables and ADD.   
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Eleven potential independent variables were identified: skin slippage, marbling, 

bloating, green discoloration, mummified skin, decomposition odor, brain liquefaction, 

height, season of the PMI, percentage of body covered by clothing, and use of AC or 

heat.  Spearman’s Correlations between these variables and the LogADD were also 

presented.  Issues of multicollinearity and failed transformations of continuous data that 

were not normal were discussed.  Height and age were plotted against the LogADD to 

look for linearity.  

A linear multiple regression analysis of the raw independent data and the 

transformed dependent variable was performed, which included: an analysis of the 

variance of Y (log10ADD), an adjusted R² that quantifies the amount of variation 

explained by the model, the t of all slopes that quantify how much variation is explained 

by each X, the equation that allows one to predict the effect of a predicted X value on the 

Y, the VIF and the TOL that quantify the correlation among X’s.  The procedures of 

forward selection, backwards elimination and stepwise regressions were used to 

determine what model was the best model.   

The residuals for each model were analyzed to determine how well each model 

explained the variation of Y.  The model was selected based on the following criteria: 

adjusted R², Mean Squares Error (MSE), Mallows’ Prediction Criterion, the F ratio and 

the individual t scores.  After the model was selected, the histogram and normal plot of 

the residuals were analyzed to look for variation that was unaccounted for by the model.  

The normality of the residuals was tested with the Shapiro-Wilk test.  However, the 
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residuals were not plotted against each independent variable because they were 

categorical.  Lastly, the model was shown to be the best model possible for the data.   
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Chapter 4 

Results 

 The results described in Chapter Four were divided into three broad categories 

that represent the three objectives of this thesis.  The first section is the investigation of 

the demographic profile for people who die alone in the U.S.  The second section is the 

identification of trends in the demographic profile of unaccompanied deaths by context.  

The third section is an inspection of taphonomic considerations within each context.  For 

each context, the PMI, ADD, taphonomic factors and changes were described.  For the 

enclosed setting, a predictive multiple regression model for estimation of ADD over PMI 

was constructed.  

 

Demographic Profile of All Unaccompanied Deaths  

In an effort to understand how the circumstances of an unaccompanied death may 

be linked to social context and a decedent’s identity, the cause and manner of death were 

explored.  Consideration was also given to the person who found the body.  Of sixty-four 

cases where this information was known, decedents were most commonly discovered by 

law enforcement officials (28.13%, 18/64) followed by family members (21.9%, 14/64).  

There were no changes in this trend when the cases were sorted by sex.   
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Manner of Death and Sex 

Of the eighty-five cases where manner of death was known (85/86, 98.84%), the 

most common manner of death was natural, followed by accidents (Figure 4.1, Table 

4.1).  For females, both natural and accidental manners of death were equally represented 

(for each, 34.8%, 8/23).  For males, 62/63 cases had known manners of death.  Natural 

deaths accounted for 53.2% (33/62) of all males whereas accidental only accounted for 

17.7% (11/62).  A Pearson Chi-square of independence including natural and accidental 

deaths revealed that sex is independent of manner of death (Χ²=3.389, df=1, p=0.066).  

A Pearson Chi-square of independence that only included homicidal and suicidal deaths 

in conjunction with Fisher’s Exact Test also showed that sex is independent of manner of 

death (Χ²=0.59, df=1, p=1.0).  Sex does not predict manner of death.  

 

Sex and Age 

Figure 4.2 demonstrates the age range for males and Figure 4.3 shows the age 

range for females.  For males, the average age at death was 48.71 years (59/60, 

s.d.=16.04 years).  For females, the average age at death was 42.62 years (23/23, 

s.d.=19.57 years).  A Mann-Whitney U test revealed that there is no relationship between 

sex and age at death (Mann-Whitney U=508.50, n=82, p=0.079).  
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Table 4.1—Sample Manners of Death. 
MANNER OF DEATH SAMPLE SIZE 
Homicide 10.5% (9/85) 
Suicide 16.3% (14/85) 
Accident 22.1% (19/85) 
Natural 47.1% (41/85) 
Undetermined 2.3% (2/85) 
Total 98.8% (85) 

 

 

Figure 4.1.—Sample Manners of Death. 
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Figure 4.2.—Age Distribution for Males. 

 

 

Figure 4.3.—Age Distribution for Females. 
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Manner of Death and Age 

Figure 4.4 shows the age distribution for each manner of death among males and 

Figure 4.5 shows the age distribution for each manner of death among females.  Table 4.2 

show the frequencies for manners of death by age categories for the sample.  Table 4.3 

provides the descriptive statistics for age at death within each manner of death.  The 

small sample sizes presented here limit the inferences that can be made from these data.  

However, the data show that persons under the age twenty years most often died from 

homicides and accidents (33.3%, 2/6 for each; Table 4.2).  Individuals within the twenties 

age range most frequently died from suicide (33.3%, 2/6) and accidents (50.0%, 3/6).  

Persons within their thirties most frequently died from accidental (42.9%, 3/7) and 

natural (28.6%, 2/7) deaths, whereas those in their forties often died from natural causes 

(50.0%, 14/28) and suicide (25.0%, 7/28).  Those persons in their fifties and over the age 

of sixty overwhelmingly died from natural causes (70.0%, 14/20; 78.6%, 11/14, 

respectively).  All manners of death except for natural were grouped together and 

compared.  A Mann-Whitney U test revealed that there is relationship between manner of 

death and age at death (Mann-Whitney U=355.00, n=81, p≤0.000). 
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Figure 4.4—Age Range by Manner of Death for Males. 

 
* Undetermined deaths (n=2) not depicted. 
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Figure 4.5—Age Range by Manner of Death for Females. 
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Table 4.2—Manner of Death by Age Range. 
Age Ranges  Homicide Suicide Accident Natural Total 

n 2/81 1/81 2/81 0 5/81 
% in Range 33.3 16.7 33.3 0 83.3 

1-19 

      
n 1/81 2/81 3/81 0 6/81 
% in Range 16.7 33.3 50.0 0 100 

20-29 

      
n 1/81 1/81 3/81 2/81 7/81 
% in Range 14.3 14.3 42.9 28.6 100 

30-39 

      
n 0 7/81 6/81 14/81 27/81 
% in Range 0 25.0 21.4 50.0 96.4 

40-49 

      
n 1/81 3/81 2/81 14/81 20/81 
% in Range 5.0 15.0 10.0 70.0 100 

50-59 

      
n 0 0 3/81 11/81 14/81 
% in Range 0 0 21.4 78.6 100 

≥ 60  

      
Count 5/81 14/81 19/81 41/81 79 Total 
Total % 6.2 17.3 23.5 50.6 97.5 

 

 
 
Table 4.3—Descriptive Statistics for Age by Manner of Death. 
Manner of Death f n  s.d. 
Homicide 6.2 5/81 25 18.48 
Suicide 17.3 14/81 41.93 12.048 
Accident 23.5 19/81 40.47 16.402 
Natural 50.6 41/81 55.24 13.276 
Undetermined 2.5 2/81 23.0 31.113 
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Cause of Death and Sex 

Cause of death was known for eighty-two individuals (95.35%, 82/86).  Figures 

4.6 and 4.7 shows the prevalence of each cause of death for males and females, 

respectively.  For individuals where cause of death was known, heart disease was the 

most prevalent cause of death (29.3%, 24/82), followed by alcohol or drug related and 

then trauma related deaths (24.4%, 20/82 and 23.2%, 19/82, respectively).  Only one 

(n=1.2%) companionless death resulted from carcinoma.  For males, the most prevalent 

cause of death was heart disease (40.4%, 19/47), followed by drug/alcohol related deaths 

(23.4%, 11/47).  For females, drug or alcohol related deaths were most prevalent (45.0%, 

9/20), and only three females died of heart disease (15.0%, 3/20).  A Pearson Chi-square 

of independence that only included heart disease and drug/alcohol related deaths in 

conjunction with Fisher’s Exact Test showed that sex is not independent of cause of 

death (Χ²=5.05, df=1, p=0.04).   

 

Cause of Death and Age Range 

Figure 4.8 and Table 4.4 show the frequencies of causes of death for each age 

category.  Table 4.5 lists the descriptive statistics for age within each cause of death.  The 

small sample sizes for these data do make it possible for trends discovered and presented 

below to be artifacts of sampling bias.  However, when age was considered with cause of 

death, a clear pattern emerged where individuals under the age 30 years almost always 

died from trauma-related causes, individuals between the ages 30-49 years predominately 
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died from drugs and alcohol and people 50 years and older typically died from heart 

disease.   

It is clear that individuals under 30 years of age almost always suffered traumatic 

deaths and so the relationship between age and cause of death for this age group was not 

tested.  A Chi-square of independence was used with Fisher’s Exact Test to test whether 

or not age was independent of cause of death; this test only considered people in their 

thirties and forties and people over the age 50 years who died from drugs and alcohol or 

heart disease.  The Chi-square test verified that there is a significant relationship between 

the type of death a person encounters and that person’s age at death (Χ²=17.967, df=1, 

p≤0.000).   
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Figure 4.6—Causes of Death for Males. 
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Figure 4.7—Causes of Death for Females. 
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Figure 4.8—Cause of Death by Age Range. 
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Table 4.4—Cause of Death by Age Range. 
Cause  1-19 20-29 30-39 40-49 50-59 ≥60 

n 0 0 4/81 13/81 3/81 0 
Age % 0 0 57.1 46.4 15.0 0 

Drugs/Alcohol 

       
n 0 0 0 2/81 0 1/81 
Age % 0 0 0 7.1 0 7.1 

Infectious 
Disease 

       
n 0 0 0 0 0 1/81 
Age % 0 0 0 0 0 7.1 

Carcinoma 

       
n 0 0 0 5/81 10/81 9/81 
Age % 0 0 0 17.9 50.0 64.3 

Heart Disease 

       
n 0 1/81 1/81 3/81 2/81 0 
Age % 0 16.7 14.3 10.7 10.0 0 

Visceral Organ 
Disease 

       
n 5/81 3/81 1/81 3/81 4/81 2/81 
Age % 83.3 50.0 14.3 10.7 20.0 14.3 

Trauma 

       
n 1/81 2/81 1/81 2/81 1/81 1/81 
Age % 16.7 33.3 14.3 7.1 5.0 7.1 

CO/CO2/Fire 

       
n 6/81 6/81 7/81 28/81 20/81 14/81 Total 
Total % 7.4 7.4 8.6 34.6 24.7 17.3 
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Table 4.5—Descriptive Statistics for Age by Cause of Death. 
Cause of Death n  s.d. 
Drugs/Alcohol 20/81 44.35 5.451 
Infectious Disease 3/81 51.33 7.767 
Carcinoma 1/81 71.0 - 
Heart Disease 24/81 60.17 14.107 
Visceral Organ Disease 7/81 42.43 9.307 
Trauma 18/81 35.11 19.745 
CO/CO2/Fire Deaths 8/81 38.38 20.743 
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Cause and Manner of Death 

Cause and manner of death are intrinsically linked, and when they were analyzed 

together, some trends arose.  Predictably, all deaths classified as resulting from heart 

disease, carcinoma, and infection were natural deaths.  All but one (14.3%) of the seven 

deaths caused by disease of the visceral organs resulted from natural deaths.  The one 

outlier was an accidental death caused by asphyxia that resulted from gran mal seizures.  

Carbon monoxide, carbon dioxide or fire related deaths were distributed evenly between 

suicidal and accidental deaths (4/8, 50.0% each), where all suicidal deaths within this 

category were achieved by inhaling car exhaust fumes and all accidental deaths were the 

results of house fires.   

Table 4.6 shows the frequency of drug or alcohol related deaths within each 

manner of death where drug or alcohol use was represented.  The data indicated that no 

homicides or undetermined manners of death had drug or alcohol involvement for the 

decedents.  However, 42.9% (6/14) of suicidal deaths had known drug or alcohol 

involvement.  For accidental deaths, 36.8% (7/19) of the cases involved alcohol or drug 

use.  For natural deaths, 17.1% (7/41) of the sample involved drugs or alcohol use.  

Suicidal and accidental deaths were lumped together and compared to natural deaths to 

investigate the relationship between drug and alcohol related deaths and manner of death.  

The Chi-square results indicate that there was a relationship between drug and alcohol 

related deaths and manners of death (Χ²=4.616, df=1, p=0.032).  The frequencies 

indicate that suicidal and accidental deaths are more likely to involve drugs and alcohol, 

despite the natural deaths that occur from long term drug or alcohol abuse.  
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Table 4.7 shows the frequencies of individuals who suffered traumatic deaths 

within each manner of death for where traumatic death was represented.  There were no 

traumatic natural deaths and so natural deaths are not represented.  All homicidal deaths 

(6/6) were traumatic, whereas only 28.6% (4/14) of suicidal deaths involved trauma.  The 

relationship between traumatic deaths and homicidal or suicidal manners of death was 

tested with a Chi-square of independence and a Fisher’s exact test (Χ²=8.571, df=1, 

p=0.005).  The results show that there is a relationship between manner of death and 

traumatic deaths, where a person who dies from homicide is much more likely to have 

died a traumatic death than someone who took his or her own life. 
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Table 4.6—Drug/Alcohol Related Deaths by Manner of Death. 
 Suicide Accident Natural Total 

n 6/82 7/82 7/82 20/82 
 

Drug/alcohol % 30.0 35.0 35.0 100 
 

Manner % 42.9 36.8 36.8 24.4 
 

Total % 7.3 8.5 8.5 24.4 
 

 

 

 

Table 4.7—Traumatic Deaths by Manner of Death. 
 Homicide Suicide Accident Undet. Total 

n 6/82 4/82 7/82 2/82 19/82 
 

Trauma % 31.6 21.1 36.8 10.5 100 
 

Manner % 100 28.6 36.8 100 23.2 
 

Total % 7.3 4.9 8.5 2.4 23.2 
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Demographic Profile by Context 

 The location where a body is discovered can provide information on the 

circumstances that led to one’s death as well as establish the environmental parameters 

that set the tempo for the rate of decomposition.  Figure 4.9 and Table 4.8 show the six 

main contexts of deposition that were identified: outdoor near-surface, outdoor 

subsurface, submerged, within a vehicle, indoors, and exhumed and embalmed.  Of the 

86 cases considered, there was one case where the context of discovery was not known.  

Most decedents were discovered within enclosed environments (defined here as indoor or 

within a vehicle; 81.1%, 69/85). 
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Figure 4.9—Context of Deposition.  

 
 

 
 
 
Table 4.8—Sample Sizes by Context. 
Context n % 
Outdoor Near-Surface 8/85 9.4 
Outdoor Subsurface 2/85 2.4 
Vehicle 7/85 8.2 
Aquatic 3/85 3.5 
Indoor 62/85 72.9 
Exhumed 3/85 3.5 
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Outdoor Near-Surface Depositions 

Among the eight cases recovered from an outdoor near-surface deposition, 75.5% 

(5/8) were men ranging in age 15-86 years.  The PMI ranged from 9 days to 11 years.  

There are no identifiable trends in the age, sex and manner of death.  Table 4.9 displays 

the frequencies for the manners of death experienced by victims whose bodies were 

discovered in outdoor near-surface environments.  Most outdoor near-surface finds 

(62.5%, 5/8) resulted from traumatic homicides.  There was also one case of an outdoor 

near-surface find at a private residence where the person had died from a traumatic 

suicide.  There were two outdoor near-surface depositions that were the result of natural 

deaths caused by heart and visceral organ diseases, one of which occurred outside a 

private residence and one of which occurred within a wooded area.  These frequencies 

indicate that a body found in an outdoor surface environment likely belongs to a victim 

whose death resulted from a traumatic homicide.   
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Table 4.9—Outdoor Near-Surface Manner of Death. 
f Homicide Suicide Accident Natural Undet. Total 
n 5 1 0 2 0 8 
%  62.5 12.5 0 25.0 0 100 
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Outdoor Subsurface Depositions 

There were only two subsurface depositions (Case 9 and Case 10).  Both deaths 

resulted from traumatic homicides where their bodies were subsequently buried in 

wooded areas.  The first case (Case 9) was a female baby of approximately fourteen 

months of age, who suffered multiple blunt force traumas to the head, neck and trunk.  

She was wrapped in a blanket and buried in a shallow grave, where she remained 

undiscovered for three months.  The second case (Case 10) was an adult man who died of 

sharp force trauma to the trunk and blunt force trauma to the trunk and head.  He was 

buried in a shallow grave used as a campground by transients and had a postmortem 

interval of “years.”  When considered in conjunction with the bodies discovered in 

outdoor surface environments, outdoor near-surface and subsurface depositions are 

indicative of homicide.  

 

Aquatic Depositions 

Three bodies were discovered in aquatic locations (Cases 11, 12 and 13).  They all 

resulted from traumatic accidents involving large bodies of water.  All three individuals 

were males whose ages ranged from 42-66 years.  The PMI ranged from one day to two 

months and two days.   

 

Exhumed Depositions 

There were three adult males who represented the exhumed subsample (Cases 14, 

15, and 16).  The first case (Case 14) died from a traumatic accident.  The individual had 
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been pulled over by police but ended up in a body of water and drowned.  Although the 

victim had been autopsied one before in Tampa, the family asked NIFS to perform a 

second autopsy.  The second decedent (Case 15) had died within a nursing home and the 

family requested an exhumation and autopsy.  At the time of data collection, there was no 

known cause or manner of death.  The last case (Case 16) was found hanging in his closet 

by a belt ligature.  His first autopsy was ruled a suicide.  The family requested another 

autopsy by NIFS, where it was ruled that the victim died from trauma with an 

undetermined cause of death.  The postmortem interval ranged from one to three months 

before exhumation. 

 

Enclosed Depositions 

The enclosed context included both vehicle depositions and bodies deposited 

within structures.  Of the 69 enclosed cases, both men (71.0%, 49/69) and women 

(29.0%, 20/69) were represented and ranged in age from two months to 90 years.  Figures 

4.10 and 4.11 show the age distributions for males and females, respectively.  Table 4.10 

shows the descriptive statistics for males’ and females’ ages at death, which was known 

for 97.1% (67/69) of the enclosed sample.  For vehicle depositions, there were three 

males and three females whose ages ranged from 18 to 50 years.  Their postmortem 

intervals spanned from one day to one week.  For indoor, there were forty-five males and 

seventeen females whose ages ranged from 2 months to 90 years, although only 2 victims 

were subadults.  The indoor cases’ postmortem intervals spanned from one to 66 days. 
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Figure 4.10—Enclosed Deposition Age Distribution for Males. 

 
 

Figure 4.11—Enclosed Deposition Age Distribution for Females. 
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Table 4.10—Enclosed Deposition Descriptive Statistics for  
Age at Death by Sex. 
Descriptive Statistics Males Females 
n 47 20 

€ 

X  47.85 46.90 
s.d.  14.624 16.698 

 

 

 

 

 

Table 4.11—Enclosed Deposition Manner of Death. 
Context  Homicide Suicide Accident Natural Undet. Total 
Vehicle % 0 71.4 (5/7) 14.3 (1/7) 14.3 (1/7) 0 7/7 
Building % 3.2 (2/62) 12.9 (8/62) 22.6 (14/62) 59.7 (37/62) 1.6 (1/62) 62/62 
Total % 2.9 (2/69) 18.8 (13/69) 21.7 (15/69) 55.1 (38/69) 1.4 (1/69) 69/69 
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Cause and Manner of Death 

Table 4.11 shows the frequencies of manners of death within vehicles and 

buildings.  Vehicle depositions were mostly results of suicides from inhalation of car 

exhaust fumes (71.4%, 5/7).  Vehicle suicides occurred in a range of places, including 

one person who chose a place along a roadside (16.7% of vehicle depositions), one 

person who opted for a parking garage, two who chose private residences (33.3% of 

vehicle depositions), and two who decided upon wooded areas (33.3%).  One person 

(14.3%) also died within their vehicle in a parking garage from bronchopneumonia and 

one person (14.3%) died in their vehicle from severe trauma and subsequent cold 

exposure after her car ran off the road and into a ravine where she remained undiscovered 

for approximately eight days. 

For all enclosed cases where it was known, police and family were most often the 

ones to discover the remains (26.4%, 14/53 for each).  More than half (59.7%, 37/62) of 

the indoor finds resulted from deaths by natural causes.  All indoor depositions were 

discovered within private residences (96.8%, 60/62) or hotel rooms (3.2%, 2/62).  Of the 

cases where it was known, the most common places in the home for people to die were 

bedrooms (38.6%, 22/57) and living rooms (33.3%, 19/57) followed by garages (12.3%, 

7/57) and bathrooms (10.5%, 6/57).  

Case 17 and 18: The two cases discovered in hotel rooms were labeled Case 17 

and 18.  Both deaths resulted from drug overdoses, although the manner varied.  Case 17 

was a man who had driven from Florida to Nebraska to tell his estranged wife that he had 

cancer.  After she rebuked him, he committed suicide by overdosing in his hotel room.  
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Case 18 was of a man who had a history of drug addiction and depression.  He died of an 

accidental drug overdose in his hotel room.  

 Case 19 and 20: The two subadults who died within enclosed environments were 

removed from the decomposition analysis on the basis that their body sizes could lead to 

outlying rates of decay.  Both children only had a postmortem interval of less than one 

day.  Case 19 was that of a seven-year-old male who died from a house fire that started 

while the family was sleeping.  He suffered from thermal burns as well as smoke and soot 

inhalation.  Case 20 was that of a two-month-old baby who suffocated at home and was 

discovered under a blanket in his crib.  The mother’s boyfriend said that he found the 

baby that way, but it was marked as a suspicious death by police investigators.  The 

manner of death was undetermined.   

 

Differences in PMI among Manners of Death 

 It was of interest to determine whether the length of time bodies remained 

undiscovered differed among manners of death.  Table 4.12 shows the descriptive 

statistics for PMI by manners of death.  Figure 4.12 shows the distribution for suicides, 

accidents and natural deaths.  Figure 4.13 shows the distribution for homicides.  While 

only 55.56% (5/9) of homicides were represented, this category contained the longest 

postmortem intervals.  Differences in PMI among suicides, accidents and natural deaths 

were tested with a Kruskal-Wallis test.  It was found that there was no difference in the 

PMI among suicides, accidents and natural deaths (X²=2.148, df=2, p≤0.342).  The PMI 

for homicides could not be tested due to the small sample size (5/85).  However, 
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homicides were characterized by extended postmortem intervals.  Most homicides (7/9; 

77.78%) were located in outdoor near-surface or subsurface environments, which was 

indicative of efforts to conceal the events and the remains.   
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Table 4.12—Description of PMI by Manner of Death. 
Manner of 
Death 

n PMI Range M  s.d. 

Homicide 5/85 9 – 4026 257.00 1097.80 1692.51 
Suicide 13/85 1 – 135 1.00 11.96 36.98 
Accident 19/85 1 – 63 1.00 7.16 14.95 
Natural 40/85 1 – 76 3.00 8.36 15.59 
Undet. 2/85 1 – 83 42.00 42.00 57.98 

* The sample size is 85 because there is one case missing information on the MOD.  

 

Figure 4.12—PMI Distributions for Suicides, Accidents and Natural Manners of 
Death. 

 
* Homicides were depicted separately due to the extended postmortem intervals represented. The two 
undetermined deaths were not depicted.  
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Figure 4.13—PMI Distribution for Homicides. 

 
* Homicides were depicted separately due to the extended postmortem intervals represented.   
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 Taphonomy, the Postmortem Interval and ADD 

Description of PMI and ADD for All Cases 

The postmortem interval and accumulated degree days were the dependent 

variables targeted for prediction.  Figure 4.14 displays the distribution of the PMI (in 

days) for the entire sample.  Figure 4.15 shows the distribution of ADD for the entire 

sample (in Celsius).  The postmortem interval is known for eighty individuals and ranges 

from one hour to 11 years, although most individuals have a PMI of less than one year 

( =78.22, M=3.00, s.d.=464.44 days).  The ADD are known for seventy six cases and 

range from 0.0-2536.11 ADD ( =125.46, M=30.84, s.d.=388.23 ADD).  Most cases 

belong to the lower spectrum for ADD and PMI, but there are a few outliers. 

As previously mentioned in the protocol description, investigators recorded each 

cadaver’s level of decomposition based on the description of Bass’ stages that best fit the 

state of the remains in question (Table 2.2).  Figure 4.16 shows the mean PMI days and 

frequencies for each stage of decomposition.  For example, this table shows that among 

the 28 bloated cases, the mean PMI was 14 days.  Table 4.13 shows the frequencies for 

each stage of decomposition for the entire sample.  In accordance with Bass’ stages, most 

of the cases were either fresh or bloated.  Table 4.14 shows the range of PMI in days for 

each stage of decay and Table 4.15 shows the range of ADD for each stage of decay.   

The pace of decompositional change is determined primarily by the 

environmental context, and so each environmental setting was analyzed separately.  

Table 4.16 shows the frequencies of decomposition stages within each environmental 

context.  All six cases that were more than 25.0% skeletonized were either outdoor near-
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surface or shallow subsurface finds.  As a result of the sample composition, 

skeletonization was not well represented in any contexts other than outdoors.  Table 4.17 

shows the ranges in PMI days for each stage of decay within each context.  These ranges 

were a function of small sample sizes and also variability within each context. 

 

Reliability of Bass’ Model for All Contexts Combined 

In Bass’ decomposition scale, each stage of decomposition is associated with a 

time range.  Figure 4.17 and Table 4.18 show the frequencies of individuals within each 

stage of decay for each of Bass’ time ranges.  The frequencies show some deviation from 

what Bass’ model would predict, particularly in the first week to first month time frame 

and afterwards.  Overall, the trends in the data seem to fit fairly well with Bass’ 

predictive model.  A Spearman’s correlation was used to test how well Bass’ stages of 

decay fit with the PMI time frames and yielded the following results: r=0.801, n=81, 

p≤0.000.  These results indicate that the stages of decay account for a significant portion 

of the variation in PMI time ranges, and overall his model is a good fit, despite the 

variable contexts of deposition.  However, the literature provides substantial support for 

environmental variability.  Therefore, despite these results, each context was analyzed 

separately. 
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Figure 4.14—PMI (Days) Distribution. 

 
 

 
Figure 4.15—ADD (˚C) Distribution. 
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Figure 4.16—Mean PMI Days and Frequencies for  
Bass’ Decomposition Stages. 

 
 
 

Table 4.13—Case Frequencies by Stage of Decomposition. 
Stage of Decay n % 
Fresh 37/86 43.0 
Bloated 32/86 37.2 
Advanced 12/86 14.0 
Dry 5/86 5.8 
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Table 4.14—PMI Day Range by Stage of Decomposition. 
Stage of Decay PMI Days 
Fresh 1 – 59 
Bloated 1 – 102 
Advanced 2 – 76 
Dry 135 – 4,026 

 

 

 

 

 

Table 4.15—ADD Range by Stage of Decomposition. 
Stage of Decay ADD (˚C) 
Fresh 0 – 818 
Bloated 0 – 342 
Advanced 9 – 1,144 
Dry 1,800 – 2,168 
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Table 4.16—Decomposition Stage by Environmental Contexts. 
Bass’ Decay 
Stages 

Context of Deposition 

 Outdoor Near-
Surface 

Sub-Surface Vehicle Submerged Indoor Exhumed Total 

        

Fresh 0 0 4.7% (4/85) 1.2% (1/85) 36.5% (31/85) 1.2% (1/85) 37 

 

Bloated 1.2% (1/85) 1.2% (1/85) 0 2.4% (2/85) 29.4% (25/85) 2.4% (2/85) 31 

 

Advanced 3.5% (3/85) 0 3.5% (3/85) 0 7.1% (6/85) 0 12 

 

Dry 4.7% (4/85) 1.2% (1/85) 0 0 0 0 5 

 

Total 9.4% (8/85) 2.4% (2/85) 8.2% (7/85) 3.5% (3/85) 72.9% (62/85) 3.5% (3/85) 85 
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Table 4.17- PMI Day Ranges for Decay Stages by Context. 
Bass’ Decay 
Stages 

Context of Deposition 

 Outdoor 
Near-Surface 

Sub-
Surface 

Vehicle Submerged Indoor Exhumed 

Fresh - - 1-7.5 1 1-4 59 
Bloated - - - 2-63 1-17 27-83 

Advanced 9-76 102 2-3 - 8-66 - 
Dry 135-4,026 - - - - - 
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Figure 4.17—Bass’ Time Ranges and Decomposition Stages. 
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Table 4.18—Stage of Decay by Time Range. 
Time Range f Fresh Bloated Advanced Dry Total 
1st Day n 31/81 2/81 0 0 33/81 
 Time Range % 93.9 6.1 0 0 100 
 Total % 38.3 2.5 0 0 40.7 

 
1st Week n 3/81 17/81 3/81 0 23/81 
 Time Range % 13.0 73.9 13.0 0 100 
 Total % 3.7 21.0 3.7 0 28.4 

 
1st Month n 1/81 6/81 7/81 0 14/81 
 Time Range % 7.1 42.9 50.0 0 100 
 Total % 1.2 7.4 8.6 0 17.3 

 
>1st Month n 1/81 3/81 2/81 5/81 11/81 
 Time Range % 9.1 27.3 18.2 45.5 100 
 Total % 1.2 3.7 2.5 6.2 13.6 

 
Total n 36/81 28/81 12/81 5/81 81 
 Total % 44.4 34.6 14.8 6.2 100 
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Outdoor Near-Surface Depositions 

Bass’ Decomposition Stage, ADD and PMI  

Figure 4.18 displays the frequencies for each stage of decomposition the bodies 

were found in.  Of the eight outdoor near-surface finds, there were no fresh cases 

represented and the majority of decedents were in the dry phase of decomposition when 

discovered.  The only decedent who was discovered in the bloated stage did not have 

associated information on the PMI, and unfortunately could not be considered for this 

portion of the analysis.   

Table 4.19 shows the PMI in days and the ADD in ˚C for when it was known.  

For the outdoor near-surface subset, the postmortem interval ranged from 9 days to 11 

years, although most PMI were longer than one month (

€ 

X =801.29, M=135, s.d.=1472.16 

days).  For cases 1, 7 and 8, ADD were not calculable.  For the cases where it was 

known, ADD ranged from 199 – 2536 ADD ( =1177.67, M=1144.44, s.d.=1016.16 

ADD).  

Figure 4.19 and Table 4.20 represent the frequency of cadavers that were 

discovered within Bass’ time ranges of the first week to first month and after the first 

month of deposition and their accompanied state of decomposition.  Bass’ (1997) model 

predicts that all dry cases will have undergone a postmortem interval longer than one 

month, and this prediction is consistent with the data, where all dry cases’ PMIs ranged 

from 4 months and 11 days to 11 years.  According to Bass’ (1997) model, bodies should 

reach an advanced stage of decomposition within one week and one month of time.  The 

data show that 2/3 (66.7%) advanced decomposition cases did decompose within the 

above stated time frame (range=9-11 days) and one advanced case (33.3%) had a longer 
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PMI of 2.5 months.  The latter postmortem interval was that of a body that had 

decomposed during the winter months and the cool temperatures might best explain this 

extended PMI.  Overall, these data fit very well with Bass’ model. 
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Figure 4.18—Outdoor Near-Surface Decomposition Stages (n=8). 

 
 

Table 4.19—Outdoor Near-Surface PMI Days for Each Case. 
Case # PMI Days ADD Stage of Decay 
Case 1 - - Bloated 
Case 2 9 199 Advanced 
Case 3 11 209 Advanced 
Case 4 76 1,144 Advanced 
Case 5 135 88.16 Dry 
Case 6 257 1,800 Dry 
Case 7 1,095 (≈3 years) - Dry 
Case 8 4,026 (≈11 years) - Dry 
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Figure 4.19—Outdoor Near-Surface Decay and PMI Stages (n=7). 

 

 

Table 4.20— Percentage of Near-Surface Decay Stages that Transpired within 
Predicted Time Ranges (n=7).  

PMI Range Advanced Dry Total 
First Month 
 

66.7 (2/3) 
 

0 28.6 (2/7) 

> First Month 
 

33.3 (1/3) 
 

100 (4) 
 

71.4 (5/7) 
 

Total 100 (3/3) 100 (4) 100 (7) 
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Anthropophagy  

The prevalence of anthropophagy was investigated to see if the Nebraska data 

were consistent with what has been identified in Tennessee.  It was found that 87.5% 

(7/8) cases exhibited some type of evidence for necrophagous activity.  Table 4.21 shows 

all animals and insects identified as having fed on the remains.  The bloated case had no 

evidence of necrophagy.  Three (37.5%) cases displayed evidence that more than one 

type of organism had been involved in soft tissue removal and all 3 of these cases were in 

the dry stage of decomposition.  Case 8 was associated with the remains of blow flies 

(Phormia regina) and Coleopteras, and exhibited disarticulation that was consistent with 

canine scavenging.  Case 5 showed evidence of both fly and canine scavenging.  Canids, 

rodents, beetles and flies had all been involved in soft tissue destruction of Case 6.  

 

Intrinsic Effects and PMI Time Ranges 

Intrinsic effects in conjunction with PMI were identified for this sample.  Table 

4.22 presents a list of taphonomic effects that were represented in the sample and their 

associated time ranges.  Sample sizes varied for each taphonomic effect in every time 

range.  The variation in sample sizes reflects cases where the information was unknown, 

due to the quality of the records from which the data were collected.  Thus, the variable 

sample sizes reflect unknown cases.  For example, for when it was known, skin slippage 

was identified in all cases that occurred within the first week to first month time range.  

Skin slippage was still present on 20.0% (1/5) of the cases that had a PMI longer than one 

month.  Most effects were found to occur within the first month. 
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Figures 4.20 shows the percentage of how often each effect was documented 

within each time range.  Skin slippage, marbling, mummified skin, odor, blood clots, 

liquefied brain tissue, and examinable organs were identified predominately on remains 

that had a PMI range within the first month.  Soil stain was the only taphonomic effect 

that is unique to postmortem intervals longer than one month within this sample.   

Table 4.23 represents the degree of skeletonization for bodies that had a 

postmortem interval that fell within one month, one year or years.  The bloated body 

(Case 1) had no skeletonization and information on skeletonization was unknown for 

Case 3.  It was found that only one case of skeletonization was in the first month of 

decomposition and this body showed approximately 50.0% skeletonization.  All cases 

within the first year of decomposition (3/7) showed some degree of skeletonization, and 

all cases that had a PMI longer than one year (2/7) were fully skeletonized. 
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Table 4.21—Outdoor Near-Surface Prevalence of Anthropophagy. 
Anthropophagy Bloated Advanced Dry Total 
Canine 0 0 75.0% (3/4)* 37.5% (3/8)** 
Rodent 0 0 25.0% (1/4) 12.5% (1/8) 
Fly 0 100%  (3) 75.0% (3/4) 75.0% (6/8) 
Beetle 0 33.3% (1/3)* 0 12.5% (1/8) 

*  Denominator represents the sample size for a given stage of decay. 
** Denominator represents the total sample size.  

 

 

Table 4.22—Outdoor Near-Surface Taphonomic Effects by Time Range. 
Taphonomic Effect First Month > First Month Total 

 PMI % PMI % Total % 
Skin Slippage  
 

100 (2)* 20.0 (1/5)* 42.9 (3/7)* 

Marbling  100 (1) 0 16.7 (1/6) 
 

Green Discoloration  
 

20.0 (1/5) 0 20.0 (1/5) 

Mummified Skin 
  

100 (2) 60.0 (3/5) 71.4 (5/7) 

Decomposition Odor  
 

100 (2) 50.0 (2/4) 66.7 (4/6) 

Blood Clot 
 

100 (1) 0 16.7 (1/6) 

Soil Stain  
 

0 100 (3) 75.0 (3/4) 

Brain Liquefaction  
 

100 (2) 100 (5) 100 (7) 

Examinable Organs  100 (2) 0 28.6 (2/7) 
* The total outdoor near-surface sample for where the PMI was known equaled 7.  However, sample sizes 
varied for each taphonomic effect by time range.  The sample size variability reflects the differentiation 
between cases that were present/absent versus unknown.  Therefore, what looks like missing cases 
represents where information was unknown. 
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Figure 4.20—Outdoor Near-Surface Taphonomic Effects by Time Range. 
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Table 4.23—Outdoor Near-Surface Skeletonization by PMI (n=6). 
Skeletonization First Month First Year Years Total % 

 
 PMI % PMI % PMI %  

 
≈25.0% 0* 33.3 (1/3)* 0* 16.7 (1/6)** 

 
≈50.0% 100 (1) 0 0 16.7 (1/6) 

 
≈75.0% 0 33.3 (1/3) 0 16.7 (1/6) 

 
≈100% 0 33.3 (1/3) 100 (2) 50.0 (3/6) 

 
Total 100 (1) 100 (3) 100 (2) 100 (6) 

*  Denominator represents the sample size for a given time range. 
** Denominator represents the total sample size.  
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Outdoor Subsurface Depositions 

Taphonomic Processes and Effects 

There were two subsurface depositions, both of which were located in shallow 

graves.  One of the depositions was that of a child whose body was in the bloated stage of 

decay and had decomposed for approximately three months (Case 9).  The other was an 

adult male whose body was completely skeletonized and had an estimated postmortem 

interval of multiple years (Case 10).  The first case (Case 9) possessed several variables 

that were compatible with a decelerated rate of decay, while the second case (Case 10) 

showed evidence of extrinsic variables that were consistent with a surface burial.     

The first case (Case 9) was a fourteen-month-old female subadult.  After the 

juvenile was murdered, she was wrapped in a blanket “container” and buried in a shallow 

grave.  The decedent had a postmortem interval of three months.  Additionally, the 

postmortem interval spanned across January to March, and the accumulated degree days 

remained relatively low (ADD=342˚ C).  This body was in a bloated state of 

decomposition, exhibiting green discoloration, bloating of some portions of the body, 

adipocere development on the face, trunk and extremities, mold growth on the face and 

skin slippage around the abdomen, perineum and feet.  

The second case (Case 10) was found in the dry stage of decomposition and the 

postmortem interval was estimated as years, although the number of years was not known 

at the time of data collection.  He was discovered in a shallow clandestine burial in a 

wooded area that transients often used as a campground.  While this deposition was 

categorized as subsurface, most of the body was only covered by leaf litter and seven 
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inches of soil or less.  The top of the skull was only about an inch below the soil surface 

and the right arm was partially visible above the soil.  The deepest portion of the grave 

excavated was approximately nine inches above the body.  Roots had grown through the 

soil in the grave. 

This case (Case 10) was completely skeletonized upon discovery, with only a 

small segment of brain tissue within the cranium, a piece of fat on one scapula and bits of 

soft tissue within the soil.  The bones exhibited staining of the same hue as the leaves 

surrounding it.  Additionally, the femurs were bleached white and one ischium and pubis 

exhibited green discolorations.  Roots had grown back through the grave area.  There was 

evidence of fly colonization in the form of pupae casings that suggested the flies had 

undergone the total process of development.  Entomological data enabled the estimation 

of the time of death as having occurred between August first and the first frost of an 

undetermined year.  Additionally, there was evidence of substantial canid scavenging; the 

right forearm was missing and the distal ends of both femurs displayed carnivore tooth 

impressions.   

 

Aquatic Depositions 

Taphonomic Processes and Effects 

Table 4.24 shows the stages of decomposition represented within Bass’ 

postmortem interval time ranges.  The first case (Case 11) was discovered in a fresh state 

and the other two cases (Case 12 and 13; 66.7%) were bloated.  Both bloated cases had 
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decomposed during the warm summer months.  None of the cases had evidence of 

necrophagous activity. 

The first case (Case 11) had a short estimated postmortem interval of one day and 

fit well within the fresh stage of decomposition.  The only decompositional effects noted 

on Case 11 were rigor mortis, purple lividity and swelling around the eyes, which was 

interpreted as early signs of decomposition gases accumulating within the facial tissues.   

  The second case (Case 12) was in a bloated state of decomposition.  This case was 

estimated to have decomposed for two days and was consistent with the bloat time range 

in Bass’ (1997) predictive model.  When discovered, this cadaver had decompositional 

gases frothing around the body’s eyes, mouth and navel region.  Both of his hands were 

macerated and the entire body possessed skin slippage.  His body was bloated and 

discolored and the veins were marbled.  The decedent’s brain was moderately liquefied 

when it was removed from the body during autopsy.  

The third case (Case 13) had an estimated PMI of two months and two days and 

was also in a bloated state of decay.  The hallmarks of the bloat stage were all present, 

including the odor of decay, skin slippage, bloating and green discoloration.  
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Table 4.24—Aquatic Deposition Stage of Decomposition  
by PMI Time Range (n=3). 
 Fresh Bloated Total 
 % Stage % Stage % Total 
First Day 100 (1) 0 33.3 (1/3) 
First Week 0 50.0 (1/2) 33.3 (1/3) 
First Month 0 50.0 (1/2) 33.3 (1/3) 
Total 100 100 (2) 100 (3) 
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 Enclosed Environments 

Likelihood of Decomposition Before Discovery between Seasons 

 To determine the likelihood of decomposition before discovery in the spring and 

summer versus the fall and winter, the data were organized into the cross-tabulation 

shown below (Table. 4.25).  The odds ratio was calculated as follows: 

(18x20)/(15/16)=1.5.  Thus, a body is 1.5 times more likely to decompose before 

discovery in the spring or summer than in the fall or winter.  In contrast, a body is 0.67 

times less likely to decompose before discovery in the fall or winter than in the spring or 

summer.   
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Table 4.25—Enclosed Deposition Presence of Decay by Seasonality.   
Stage of Decay Spring/Summer Fall/Winter Total 
Fresh (a) 15 (b) 20 35 
Bloated/Advanced (c) 18 (d) 16 34 
Total 33 36 69 

 

  



 

 

    157 

Relationship between PMI, ADD and Stage of Decay 

 Cases 19 and 20 were removed on account of their small body sizes.  Figure 4.21 

shows the enclosed sample’s distribution of PMI days and Figure 4.22 shows the 

distribution for ADD.  The postmortem interval was known for 64 cases and ranged from 

one to 66 days, with a mean PMI=4.84 days, s.d.=9.1037, M=2.0 days.  Figure 4.23 

shows the PMI day distribution for each stage of decomposition.  Table 4.26 shows the 

descriptive statistics for the postmortem intervals associated with each stage of 

decomposition.  A Spearman’s Correlation test showed that there was a significant 

relationship between PMI and decomposition (r=0.772, p≤0.000, n=64).  The ADD were 

known for 64 cases and ranged from 0 – 786 ADD, with a mean ADD=67.43, 

s.d.=120.275, M=24.44 ADD.  Figure 4.24 shows the ADD distribution for each stage of 

decay.  Table 4.27 shows the ADD descriptive statistics for each stage of decomposition.  

A Spearman’s Correlation test showed that there was a significant relationship between 

ADD and stages of decomposition (r=0.585, p≤0.000, n=64). 

 

Reliability of Bass’ Decomposition Model 

The investigation of decompositional phases for the enclosed cases revealed that 

there were 49.3% (33/67) fresh, 37.3% (25/67) bloated, and 13.4% (9/67) advanced.  The 

dry phase was not represented in this sample.  Table 4.28 and Figure 4.25 show the 

frequencies of decay stages within each postmortem interval time range specified in 

Bass’ model.  For fresh cases, the mean postmortem interval was 1.44 days and fell 

within the first day period 87.5% of the time.  For bloated, the mean PMI was 5.0 days 
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and occurred within the first day to first week interval 73.9% of the time.  For advanced, 

the mean PMI was 16.56 days and correctly transpired within the first week to first month 

range 55.6% of the time.  Preliminary investigation of the frequencies shown in Table 

4.28 indicates that the likelihood of remaining undiscovered within an enclosed 

environment decreases with the passage of time.  Table 4.28 and Figure 4.25 also show 

that all stages of decomposition were represented within the first week and first month 

time ranges.  This demonstrated a problematic variability of decay rates with extended 

PMI and suggested that there was variation in the amount of time needed to achieve each 

stage of decomposition.   

A Spearman’s Correlation was implemented to test whether or not there was a 

correlation between the stages of decomposition and the postmortem interval time ranges 

that Bass created.  The correlation between time range and stage of decomposition was 

significant (r=0.829, n=64, p≤0.000), indicating that Bass’ model accounted for a 

significant amount of the variation in this sample.  Bass’ model was therefore an 

adequate predictor the postmortem interval for this sample.  This correlation 

demonstrates that the data did reflect decomposition variability.  Thus, the data were well 

suited for identifying what taphonomic effects best correlate with time and accumulated 

degree days, and would therefore serve as good predictors of the postmortem interval. 
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Figure 4.21—Enclosed Deposition Distribution for PMI Days (n=64). 

 
 * Measured in Days 

 
Figure 4.22—Enclosed Deposition Distribution for ADD (n=64). 

 
* Measured in ˚C.  
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Figure 4.23—Enclosed Deposition PMI Day Range by Bass’ Decomposition Stages 
(n=64). 
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Figure 4.24—Enclosed Deposition ADD Range by Bass’  
Decomposition Stages (n=64). 
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Table 4.26—Enclosed Deposition Descriptive Statistics for PMI Days by Decay 
Stage. 
Stage of Decay n PMI Range  s.d. 
Fresh 32/67 1-8 1.44 1.34 
Bloated 23/67 1-17 5.0 4.27 
Advanced 9/67 2-66 16.56 19.87 

 

 

Table 4.27—Enclosed Deposition Descriptive Statistics on ADD  
by Decay Stage. 
Stage of Decay n ADD Range  s.d. 
Fresh 32 0-82 18.32 18.87 
Bloated 23 0-291 80.36 73.84 
Advanced 9 9-786 209.75 254.23 

 

 

Table 4.28—Enclosed Deposition Stage of Decay by PMI Range. 
 Fresh Bloated Advanced Total % 
 Stage % Total % Stage % Total % Stage % Total %  

 
First Day 87.5 43.8 

(28/64) 
8.7 3.1 (2/64) 0 0 46.9 

(30/64) 

First Week 
 

12.5 6.2 (4/64) 73.9 26.6 
(17/64) 

33.3 4.7 (3/64) 37.5 
(24/64) 

First Month 
 

0 0 17.5 6.2 (4/64) 55.6 7.8 (3/64) 14.1 
(9/64) 

> First 
Month 

0 0 0 0 11.1 1.6 (1/64) 1.6 
(1/64) 

Total 100 50.0 
(32/64) 

100 35.9 
(23/64) 

100 14.1 
(9/64) 

100 (64) 
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Figure 4.25—Enclosed Deposition Stages of Decay by  
Bass’ Time Ranges (n=64). 
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Difference in PMI Days and ADD among Decomposition Stages 

 Nonparametric Kruskal-Wallis tests were employed to test for differences in 

accumulated degree days among decomposition stages and for PMI days among 

decomposition stages.  For ADD, the Kruskal-Wallis test yielded the following results: 

X²=21.651, df=2, p≤0.000.  This revealed that there was a significant difference in the 

ADD among the stages of decomposition.  Table 4.29 shows the results for the Mann-

Whitney U post hoc tests for ADD; there were significant differences between fresh and 

bloated cases as well as fresh and advanced cases, but not between bloated and advanced 

cases.  For PMI days, the Kruskal-Wallis test yielded the following results: X²=29.116, 

df=1, p≤0.000.  These results indicated that there was a significant difference in PMI 

days among the decomposition stages.  Table 4.30 shows the results for the Mann-

Whitney U post hoc tests; there were significant differences in the postmortem interval 

among all stages represented.  
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Table 4.29—Mann-Whitney U Post Hocs: Decay Stages and ADD. 
Comparison Mann-Whitney U p-value 
Fresh and Bloated 79.0 ≤0.000 
Fresh and Advanced 11.0 ≤0.000 
Bloated and Advanced 56.0 =0.045 

 

 

 

 

 

Table 4.30—Mann-Whitney U Post Hocs: Decomposition Stages and PMI. 
Comparison Mann-Whitney U p-value 
Fresh and Bloated 81.0 ≤0.000 
Fresh and Advanced 11.0 ≤0.000 
Bloated and Advanced 56.0 =0.047 
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Description of Taphonomic Effects by Stage of Decay 

To approximate whether or not decomposition within enclosed environments 

manifested itself in the same manner and at the same rates relative to the assigned stage 

of decomposition, investigators also identified the individual taphonomic effects located 

on the remains and the stage of decomposition in which the bodies were discovered.  

Table 4.31 displays the intrinsic decompositional changes that were identified within this 

sample for when it was known if they were present or absent.  Due to the limitations of 

retrospective data, the sample sizes varied for every taphonomic effect within each stage 

of decomposition.  The unknown cases exemplified how the variation in police and 

autopsy records affected what was known for each case.  

Within the bloated stage, bloating of the abdomen was documented at a frequency 

of 91.7% (22/24); however, bloating was still present within 62.5% (5/8) of the 

“advanced” cases, when putrefactive gases have supposedly been released.  This could be 

problematic when attempting to assign a time range for PMI because the presence of 

bloating is the primary feature that defines the first day to first week PMI time range.  All 

cases beyond the fresh state possessed decompositional odor, and most bodies’ organs 

were still examinable.  These taphonomic effects were not identified as good indicators of 

stage of decomposition.  Lividity was also eliminated as an indicator of decompositional 

stage.   

Skin slippage is a feature that is not expected to occur until the bloated phase and 

was most prevalent during the bloated stage but was also documented in 18.2% (6/33) of 

the fresh cases.  Skin slippage, marbling, bloating, postmortem blood clotting and the 
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presence of purge fluid all showed the highest prevalence during the bloated phase and 

could be good predictors for that phase.  Green discoloration, mummification, 

decompositional fluid staining and brain liquefaction were most prevalent during the 

advanced stage and may serve as good indicators of this stage.  However, partial 

mummification was identified in 17.4% (4/23) of the bloated cases.  Skeletonization was 

only found within 11.1% of the advanced cases (1/9) and this body was less than 25.0% 

skeletonized.  Skeletonization was not represented enough in this sample to know 

whether or not it is a useful indicator for assigning a body to a stage of decomposition for 

enclosed remains.   
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Table 4.31—Enclosed Remains Taphonomic Effects by Decay Stage. 
Taphonomic Effect Fresh Bloated Advanced Total 

PMI Range (days) 1.0 - 8.0 1.0 - 17.0 2.0 - 66.0 1 - 66.0 
ADD Range 0.0 - 82.0 0.0 - 291.0 9.0 - 786.0 0.0 - 786.0 

 
Taphonomic Effect Stage % Stage % Stage % Total % 
Rigor 84.4 (27/32*) 44.0 (11/25*) 11.9 (1/9*) 59.1 

(39/66*) 

Lividity  96.9 (32/33) 100 (24/24) 77.8 (7/9) 95.4 (62/65) 
 

Skin Slippage  
 

18.2 (6/33) 95.7 (22/23) 88.9 (8/9) 55.4 (36/65) 

Marbling  
 

0 83.3 (20/24) 62.5 (5/8) 38.5 (25/65) 

Bloating  
 

0 91.7 (22/24) 62.5 (5/8) 42.2 (27/64) 

Green 
Discoloration  
 

3.0 (1/33) 79.2 (19/24) 87.5 (7/8) 41.5 (27/65) 

Purge Fluid  
 

29.0 (9/31) 75.0 (15/20) 40.0 (2/5) 46.4 (26/56) 

Mummified Skin  
 

0 17.4 (4/23) 88.9 (8/9) 18.8 (12/64) 

Decomp Odor  
 

3.4 (1/29) 100 (22/22) 100 (8/8) 52.5 (31/59) 

Decomp Fluid 
Stain  
 

0 14.3 (3/21) 50.0 (3/6) 10.7 (6/56) 

Blood Clot  
 

64.5 (20/31) 86.4 (19/22) 75.0 (6/8) 73.8 (45/61) 

Brain Liquefaction  
 

0 31.8 (7/) 57.1 (4/) 18.3 (11/60) 

Examinable Organs  90.9 (30/33) 92.0 (23/25) 77.8 (7/9) 89.6 (60/67) 

* The total enclosed sample for where the stage of decomposition was known equaled 67, after outliers 
were removed.  However, sample sizes varied for each taphonomic effect by stage of decay.  The sample 
size variability reflects the differentiation between cases that were present/absent versus unknown.  
Therefore, what looks like missing cases represents where information was unknown. 
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Descriptions of Intrinsic Taphonomic Effects, PMI and ADD 

 To identify any decomposition effects that could be appropriate indicators of the 

postmortem interval, the frequencies of individual taphonomic effects within Bass’ time 

ranges of PMI were described.  Table 4.32 shows the decomposition traits that were 

identified as potentially having a strong relationship with the postmortem interval.  The 

frequencies of how often each effect was present are listed.  Due to cases where the 

presence or absence of an effect was unknown, the sample sizes varied.  Figure 4.26 

shows the percentage of how often each effect was documented as present within each 

time range.  Table 4.33 shows the descriptive statistics for each trait’s postmortem 

interval (in days) and ADD.  This table demonstrates the large range of variability in 

ADD and PMI days for each trait.  

 

Likelihood of Taphonomic Effects After the First Week of the PMI 

 The likelihood of the presence of taphonomic effects within and after the first 

week of decomposition was investigated with odds ratios.  Table 4.34 – 4.38 show the 

cross-tabulations of frequency data for taphonomic effects within and after the first week 

of decomposition.  The following taphonomic effects were analyzed: marbling, bloating, 

green discoloration, mummification and brain liquefaction.  For each, the odds ratio was 

calculated as follows: (ad)/(bc)=odds ratio.  Table 4.39 shows the likelihoods of 

displaying each taphonomic effect for within one week and after one week of the PMI.  

This table shows that all examined taphonomic effects were more likely to be present 

when a body had undergone a postmortem interval of longer than one week.  For 
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example, a body is 3.27 times more likely to present marbling after the first week of the 

PMI, when compared to those without bloating.  Conversely, a body is 0.31 times less 

likely to display marbling within the first week, when compared to those who do not 

display bloating. 

 

Correlations between Taphonomic Effects, PMI and ADD 

Spearman’s Correlations were used to identify which of the taphonomic effects 

listed in Table 4.32 were significantly correlated with PMI days and ADD.  The 

following intrinsic characteristics of the individuals in life were also included: age, 

height, estimated weight, and estimated BMI.  These correlations were conducted to 

show that individual effects were in fact correlated with the raw ADD variable because 

the ADD were later transformed for model building (described below).  Table 4.40 shows 

the intrinsic individual characteristics and taphonomic effects that accounted for a 

significant portion of the variation of PMI and ADD.  Age, estimated BMI and height did 

not correlate well with either and were dropped from the analysis.  Surprisingly, the 

taphonomic effects tended to be more highly correlated with PMI than ADD.  Estimated 

weight was the only intrinsic characteristic of individuals during life that was 

significantly correlated with ADD.    
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Table 4.32—Enclosed Deposition Taphonomic Effects and Time Ranges. 
Taphonomic 
Effect  

First Day First Week First Month >First Month Total 

  Range % Range % Range % Range % Total % 

Rigor 82.8 (24/29*) 50.0 (11/22*) 25.0 (3/12*) 0 60.3 
(38/63*) 

Skin Slippage  20.7% (6/29) 86.4% (19/22) 81.8% (9/11) 100 (1) 55.6% 
(35/63) 

 
Marbling  3.3% (1/30) 70.0% (14/20) 63.6% (7/11) 100 (1) 37.1% 

(23/62) 
 

Bloating  6.7% (2/30) 80.0% (16/20) 60.0% (6/10) 100 (1) 41.0 (25/61) 
 

Green Discolor  6.7% (2/30) 66.7% (14/21) 80.0% (8/10) 100 (1) 40.3 (25/62) 
 

Purge Fluid  32.1 (9/28) 61.1 (11/18) 71.4 (5/7) 0 46.3% 
(25/54) 

 
Mummified Skin  0 25.0% (5/20) 54.6% (6/11) 100 (1) 19.7% 

(12/61) 
 

Decomp Odor 3.8% (1/26) 94.7% (18/19) 90.0% (9/10) 100 (1) 51.8% 
(29/56) 

 
Blood Clot 62.1% (18/29) 85.7% (18/21) 80.0% (8/10) 100 (1) 73.8% 

(45/61) 
 

Brain Liquefaction  0 31.6% (6/19) 44.4% (4/9) 100 (1) 19.0% 
(11/58) 

* The total enclosed sample for where the PMI was known equaled 64, after outliers were removed.  
However, sample sizes varied for each taphonomic effect by time range.  The sample size variability 
reflects the differentiation between cases that were present/absent versus unknown.  Therefore, what looks 
like missing cases represents where information was unknown. 
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Figure 4.26—Enclosed Context Percentages of Taphonomic Effects Present for Each Time Range. 
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Table 4.33—Enclosed Deposition PMI for Taphonomic Effects. 
Taphonomic Effect n Range  s.d. 

  PMI* ADD** PMI* ADD** PMI* ADD** 
Rigor 38 1-10 0-150 2.25 29.33 2.21 36.88 
Skin Slippage  35 1-66 0-786 7.40 104.17 11.65 152.20 
Marbling  23 1-66 0-786 9.00 129.42 13.53 167.69 
Bloating  25 1-66 0-786 7.60 126.91 12.91 167.72 
Green 
Discoloration  

25 1-66 0-786 8.88 135.60 13.23 170.20 

Purge Fluid  25 1-17 0-336 4.22 75.07 4.58 92.54 
Mummified Skin  12 2-66 31-786 13.33 210.51 17.56 218.22 
Decomp Odor  29 1-66 0-786 8.34 112.22 12.36 152.84 
Blood Clot  48 1-66 0-786 5.26 82.79 10.18 139.66 
Brain Liquefaction  11 2-66 0-786 12.64 191.11 18.50 221.83 

* Measured in Days 
** Measured in ˚C 
 

 

Table 4.34—Enclosed Deposition Frequency of Marbling by Time Range.   
Marbling > 1 Week ≤ 1 Week Total 
Present (a) 7 (b) 15 22 
Absence  (c) 5 (d) 35 40 
Total 12 50 62 

 

Table 4.35—Enclosed Deposition Frequency of Bloating by Time Range.   
Bloating > 1 Week ≤ 1 Week Total 
Present (a) 7 (b) 18 25 
Absence  (c) 4 (d) 32 36 
Total 11 50 61 
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Table 4.36—Enclosed Deposition Frequency of Green Discoloration  
by Time Range.   
Green 
Discoloration 

> 1 Week ≤ 1 Week Total 

Present (a) 9 (b) 16 25 
Absence  (c) 2 (d) 35 37 
Total 11 51 62 

 

Table 4.37—Enclosed Deposition Frequency of Mummification  
by Time Range.   
Mummification > 1 Week ≤ 1 Week Total 
Present (a) 6 (b) 5 11 
Absence  (c) 6 (d) 44 50 
Total 12 49 61 

 

Table 4.38—Enclosed Deposition Frequency of Brain Liquefaction  
by Time Range.   
Brain Liquefaction > 1 Week ≤ 1 Week Total 
Present (a) 4 (b) 6 10 
Absence  (c) 6 (d) 42 48 
Total 10 48 58 

 

Table 4.39—Likelihood of Taphonomic Effects by PMI Time Range.   
Taphonomic Effect ≤ 1 Week > 1 Week 
Marbling 0.31 3.27 
Bloating 0.32 3.11 
Green Discoloration 0.10 9.84 
Mummification 0.11 8.8 
Brain Liquefaction  0.21 4.67 
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Table 4.40—Spearman’s Correlations between Taphonomic Effects, PMI and ADD. 
Taphonomic Effect n PMI Days ADD 

  r p≤ r p≤ 
Rigor  63 -0.467 0.000 -0.422 0.001 

Skin Slippage  63 0.573 0.000 0.431 0.000 

Marbling  62 0.628 0.000 0.486 0.000 

Bloating  61 0.583 0.000 0.547 0.000 

Green Discoloration  62 0.65 0.000 0.555 0.000 

Mummified Skin  61 0.534 0.000 0.546 0.000 

Decomposition Odor 56 0.810 0.000 0.619 0.000 

Brain Liquefaction  58 0.510 0.000 0.442 0.001 

Weight in Kg 63 -0.157 0.218 -0.393 0.001 
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Description of Extrinsic and Epidemiological Factors  

 It was of interest to identify environmental factors that influenced the velocity of 

decay within enclosed environments.  Among known cases, only 12.3% (7/57) cases with 

fly colonization were documented in this sample: 11.1% (2/18) within the bloated stage 

and 71.4% (5/7) within the advanced stage.  For vehicles only, 33.3% (2/6) of the cases 

presented evidence of fly colonization.  No cases of beetle colonization were identified in 

the indoor records.  The only documented case of carnivorous activity was found within 

the first week and “bloated” range.  Based on these findings, necrophagous activities are 

not good indicators for the postmortem interval or the accumulated degree day interval 

for enclosed spaces.  

 Preliminary trends suggested that synthetic fabrics and containers might retard the 

pace of human decay.  After the two subadults were removed from the analysis, there 

were two bodies that were still fresh after the first day but within the first week of 

decomposition and both bodies decomposed on synthetic surfaces, such as carpet, 

bedding and a car seat.  They were also both moderately to fully covered by clothing 

(≈50.0-100.0%).  Of the four bloated individuals whose postmortem interval was 

estimated as being within the first month, one (25.0%) had been wrapped within a 

blanket.  This body and another were both found on bedding, and there were two others 

who (50.0%) had decomposed on a couch and a recliner.   

 All three advanced cases that were within their first week of decomposition were 

also located within vehicle containers and were mostly covered with clothing (≈50 – 

75%).  The victims were all seated in an upright position where their upper bodies would 



 

 

    177 

have been in position to receive sun exposure through the windows.  For at least two of 

these cases, it was known that the windows were closed.  This suggested that vehicle 

deposition greatly accelerated the rate of human decay.  One of the bodies that were 

found in a car with closed windows had a postmortem interval of only two days, and yet 

maggots had decimated a large portion of the soft tissue (approximately 75.0-95.0% 

complete). 

  

Relationship between Extrinsic Factors, PMI and ADD 

 Spearman’s Correlations were used to test for correlations between PMI and 

ADD as well as any environmental and burial factors that could be suitable predictors of 

the postmortem interval.  These variables included: the percent of the body covered by 

clothing, whether or not there was a container, use of AC or heat, room in home, and 

surface of deposition.  Table 4.41 shows the variables that were significantly correlated 

with ADD.  Interestingly, the season of decomposition and the use of air conditioning or 

heat were significantly correlated with ADD but not with the postmortem interval.  The 

presence of necrophagous activity was significantly correlated with both PMI and ADD.  

These variables could be useful in the prediction of the accumulated temperature since 

death. 
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Table 4.41—Extrinsic and Burial Factors Correlated with ADD. 
Variable  ADD Correlation  

 n r p≤ 
Use of AC/Heat during the 
PMI 

19 -0.463 0.046 

PMI Seasons 64 -0.453 0.000 

Necrophagous Activity 55 0.457 0.000 
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Transformations of PMI and ADD 

 It was determined that ADD and PMI days were not normal.  Several strategies 

were attempted to avoid transformations, such as separating the PMI days and ADD by 

stage of decay and by various time intervals.  Unfortunately, these attempts were 

unsuccessful at making either ADD or PMI normal and thus transformations were 

attempted.  Transformations for the postmortem interval in days were unsuccessful.  

Unfortunately, an alternative and comparable model that predicts the PMI could not be 

created. 

For model building, accumulated degree days were transformed into the log10 of 

accumulated degree days (LogADD) because this was the only transformation that made 

the dependent variable follow a normal distribution (Shapiro-Wilk=0.986, df=56, 

p=0.144).  Figure 4.27 shows the distribution for the LogADD.  The enclosed sample 

only had data for bodies whose PMI ranged from 1 – 66 days and whose ADD ranged 

from 0 – 786 ˚C.  As a result, this model is only adequate for prediction of postmortem 

intervals and ADD that fall within these ranges.  The LogADD ranged from 0.0 – 2.90 

(mean=1.51, s.d.=0.56 log10ADD). 

 

Relationship Between Independent Variables and LogADD 

 Table 4.42 shows a variety of factors that were considered as potentially good 

predictors for the LogADD.  There was evidence of multicollinearity among some of the 

intrinsic decompositional effects such as bloating and green discoloration.  Correlations 

among the independent variables can make it difficult to reliably estimate the slopes of 
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the variables that are highly correlated.  However, the Spearman’s Correlations identified 

these taphonomic effects as the most important predictors of the LogADD.  It was clear 

that decomposition effects were correlated with the temperature accumulation during the 

PMI and these taphonomic changes were often the only evidence available to estimate 

this interval.  Despite the multicollinearity, they were included.   

Although height and the percentage of the body covered by clothing were not 

significantly correlated with ADD, they were significantly correlated with the LogADD.  

The height data were also normal (Shapiro-Wilk=0.978, df=56, p=0.397) and so both 

height and the percent of body coverage by clothing were reconsidered in the analysis as 

possible predictors.  Estimated weight and BMI could not be considered for model 

building because they were not normal and transformations were unsuccessful.  The use 

of AC or heat was not significantly correlated with the LogADD; however, it was 

significantly correlated with the untransformed Y and so it was considered for model 

building.   

Figure 4.28 shows height plotted against the LogADD.  Height and the LogADD 

did show a clear linear relationship, where as the LogADD increases, height decreases.  

Therefore, height met both the assumptions of normality and linear relationships with the 

LogADD and was included for model building.   
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Figure 4.27—Distribution of LogADD. 
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Table 4.42—Likely Predictors of LogADD. 
Variable Correlation with LogADD 

 n r p≤ 
Rigor 56 -0.544 0.000 

Skin Slippage  56 0.359 0.007 

Marbling  55 0.485 0.000 

Bloating  54 0.549 0.000 

Green Discolor  55 0.562 0.000 

Mummified Skin  54 0.518 0.000 

Decomposition Odor 49 0.608 0.000 

Brain Liquefaction  51 0.500 0.000 

Height 56 -0.329 0.013 

% of Body Covered 
by Clothing 

50 -0.281 0.048 

Use of AC/Heat 
during the PMI 

16 -0.287 0.280* 

PMI Seasons 57 -0.412 0.001 

Necrophagous 
Activity 

48 0.492 0.000 

* The use of air conditioning or heat variable was not significantly correlated with the transformed ADD 
(Log10ADD).  However, it was significantly correlated with the untransformed variable, ADD.  Thus, it was 
still considered for creating the multiple linear regression model.  The use of AC/Heat variable was selected 
for the model and shown to independently account for a significant portion of the variation in the model.    
 



 

 

    183 

 

 

 

 

Figure 4.28—Height in Meters and LogADD. 

 
* Line represents Lowess Line.   
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Multiple Regression Model 

All variables listed in Table 4.42 except the presence of necrophagous activity 

were considered for the regression model.  When the presence of necrophagous activity 

was used, the adjusted R² was substantially lowered and so this variable was manually 

removed.  The procedures of forward selection, backwards elimination and stepwise 

regressions were used to determine what model would be the best model.  Stepwise 

regression yielded the model of choice, which incorporated the following five variables: 

decomposition odor, use of air conditioning or heat, marbling, brain liquefaction, and 

mummification of soft tissue.  This model was chosen based on the following criteria: 

adjusted R², Mean Squares Error (MSE), Mallows’ Prediction Criterion, the F ratio and 

the individual t scores. 

The ANOVA yielded the following statistics: F=40.807, df=5, 5 and p≤0.000.  

The ANOVA’s significance level demonstrates that the independent variables account for 

a significant amount of the variation in the LogADD.  The standard error of the estimate 

is S.E.=0.118, which should be added and subtracted from a predicted ADD so as to 

provide a range.  The mean squares error MSE=0.014, which is the second to lowest 

MSE for all possible models and indicates that there is less variation not accounted for in 

this model than all others except one.   

 Table 4.43 shows the R values and the Mallows’ Prediction Criterion for this 

model.  The adjusted R² value shows that 95.2% of the variation in the LogADD has been 

explained by this model.  Overall, these two statistics indicated that this is a strong 
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model, despite the evidence of multicollinearity that was first observed among some of 

the variables.   

Table 4.44 shows the t-values, tolerance and VIF for all predictive variables.  

Below is the equation (4.1) to predict the effect of a predicted X value on the LogADD.  

This equation showed that if decomposition odor was increased by one and all other 

independent factors were held constant, the LogADD would increase by 0.61.   

 

(4.1) 

Log10 (Ŷ)=1.227+0.61(Odor)-0.512(AC/Heat)+0.714(Marbling)-

0.414(Brain Liquefaction)-0.268(Mummification)+€  [±0.118] 

 

 The t-values for all independent variables were significant except for brain 

liquefaction and mummification.  These scores indicated that all independent variables 

except for liquefaction and mummification accounted for a significant portion of the 

variation in LogADD.  Mummification and liquefaction did not account for a significant 

portion of the variants by themselves, but did to contribute as predictors to the total 

variation accounted for by the model.  Both tolerance and VIF values indicate that there 

were no problems in the model associated with multicollinearity.   
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Table 4.43—R statistics and Mallows’ Prediction Criterion. 
Model Statistics 

R 0.988 
R2 0.976 
Adjusted R2 0.952 
Mallows’ Prediction Criterion 2.643 

 

 

 

Table 4.44—T-values, Tolerance and VIF for Predictive Model. 
Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

t p 
 

Collinearity 
Statistics 

 B S. E Beta   Tol. VIF 
Constant 1.227 0.064  19.191 ≈0.000   
Decomposition 
Odor 

0.610 0.099 0.591 6.157 0.002 0.519 1.925 

AC/Heat -0.512 0.090 -0.479 -5.659 0.002 0.668 1.497 
Marbling 0.714 0.151 0.668 4.719 0.005 0.239 4.193 
Brain 
Liquefaction 

-0.414 0.170 -0.359 -2.432 0.059 0.219 4.556 

Mummification -0.268 0.144 -0.150 -1.856 0.123 0.733 1.364 
* Excluded Variables: skin slippage, bloating, green discoloration, height, % of body covered by clothing, 
seasons of PMI 
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Model Evaluation 

 Figure 4.29 shows the histogram of the residuals and Figure 4.30 shows the 

residuals’ normal plot.  Both plots allude to problems with this model where variation of 

the LogADD has not been accounted for.  The normality for the unstandardized and 

standardized residuals were tested and were normal (Shapiro-Wilk=0.945, df=11, 

p=0.577 for both).  Although the histogram was not distributed along the bell-curve, the 

residuals were highly statistically insignificant.  The residuals could not be plotted 

against the LogADD to identify any departures from linearity or homoscedasticity 

because all the independent variables were categorical.  Overall, this was the best model 

discovered.   
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Figure 4.29—Histogram of Residuals. 

 
 

 
Figure 4.30—Normal Plot of Residuals. 
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Chapter 5 

Discussion  

Demographic Profile for All Unaccompanied Deaths 

A demographic analysis of the people who composed this sample began to 

illustrate the collective identity of individuals who die alone in the Midwest.  However, 

the small sample sizes investigated within this study necessitate caution in the 

interpretation of general trends.  The sample was overwhelmingly composed of adult 

European Americans and mostly men, which reflect on the greater population from which 

it was drawn, as most Nebraskans are of European ancestry.  It was unknown as to why 

women and children were not more prevalent in the sample, but the former probably 

indicates that most children are unlikely to die alone.   

Interestingly, sex was independent of age at death and manner of death, but there 

was a relationship between cause of death and sex.  It was found that men were dying 

both of heart disease and drugs or alcohol, while women were primarily dying of drugs or 

alcohol but not heart disease.  These common causes of death communicate aspects of 

American lifestyles such as high cholesterol diets and the tendency towards excessive 

consumption that promotes poor health and early death.  

Age was related to manner of death, where younger individuals suffered 

unexpected homicidal, suicidal or accidental deaths, while older individuals often 
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experienced natural deaths.  The association of natural deaths to older individuals and 

unexpected deaths to younger people relates to the common causes of death, namely heart 

disease and drugs/alcohol.  It was found that suicides and accidents were more likely to 

involve drugs and alcohol than were natural deaths.  However, the retrospective nature of 

the data made it likely that drug and alcohol involvement in solitary deaths were highly 

underrepresented.  Autopsy reports do not always provide information about illegal 

substance use for chronic users who die a natural death.  Drugs and alcohol are also less 

likely to be detected as time passes.  Additionally, unless a case was solved it is unlikely 

that death investigation reports would provide information about substance use of 

offenders in homicide cases.  Yet these results indicated that deaths from acute 

consumption of alcohol or drugs were more common than deaths from long-term 

substance abuse. 

Based on these findings, unaccompanied deaths in the Midwest were 

characterized by Euroamericans men who were middle aged and died natural deaths from 

heart disease or drug and alcohol abuse.  Women were not as prevalent but tended to die 

from drugs and alcohol abuse and not heart disease.  In contrast, the younger individuals 

in the population died violent and unexpected deaths.  The demographic profile of 

unanticipated deaths could be useful in future analyses of how lifestyle is reflected in 

death.  Also, demographic information could be used for developing investigative 

techniques for when a decedent is discovered and the events surrounding his or her 

demise must be reconstructed.     
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Demographic Profile by Context and PMI 

An analysis of the demographic profile in conjunction with epidemiological 

variables such as manner of death allowed for the anthropological model to account for 

who was at risk of dying alone and being discovered in each context.  Victim 

demographics revealed trends in collective identity (Kimmerle and Baraybar 2008; 

Kimmerle et al. 2009) while the locations of where bodies were discovered provided 

information on the circumstances that led to their deaths (Morten and Lord 2002).  The 

anthropological model enabled the relationship between collective identity and 

perimortem events to be linked with the postmortem interval.  Six main contexts of 

deposition were identified: outdoor near-surface, outdoor subsurface, submerged, 

exhumed, within a vehicle, and indoors.   

Collective identity and human behavior surrounding a death event dictated the 

taphonomic scenario (Kimmerle et al. 2009; Morten and Lord 2002).  It was found that 

there was no relationship between the length of the postmortem interval and the manner 

of death.  However, this analysis only considered the PMI for suicides, accidents, and 

natural deaths.  The descriptive statistics showed that homicides had the largest range and 

the highest means and medians for the postmortem interval (Table 4.12).  Although the 

small sample size for homicides precluded their inclusion in the analysis, the descriptive 

statistics indicated that people who die from homicides tend to remain undiscovered 

longer than people who die from other circumstances.  These results were congruous with 

the conditions surrounding a homicide.  The depositions that resulted from homicides 

reflected body disposal.  Similarly, most outdoor near-surface (62.5%, 5/8) and all 
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subsurface finds (2/2) resulted from traumatic homicides.  For near-surface depositions, 

the PMI were highly variable, but most cases (57.1%, 4/7) had a PMI longer than four 

months.  The two subsurface depositions had PMI of three months and “years.” 

Although the small sample size for homicides (9/85) requires caution in 

interpretation, the results suggest that homicides tend to have longer PMI and are more 

likely to be found in an outdoor location due to the nature of the death event.  Similarly, 

outdoor near-surface and subsurface contexts were characterized by homicides, body 

disposal, and extended PMI.  These trends demonstrated how human behavior 

surrounding the death event affects location of deposition and the time a body remains 

undiscovered.   

In contrast, exhumed bodies were all adult males with questionable circumstances 

surrounding their deaths.  Exhumations are typically executed when family or law 

enforcement wish to reexamine the body for clues that inform on cause and manner of 

death.  All (3/3) aquatic depositions were men and resulted from accidental deaths where 

movement of the body reflected fluvial transport.  The water sources were either lakes or 

a river dam that were open to the public, and so 66.6% (2/3) of the cases were discovered 

within days of the death event.  Most decedents were discovered within enclosed 

environments, yet only 2.9% (2/69) of deaths within this context resulted from 

homicides.  Consequently, enclosed depositions were not likely to result from homicide 

or from body disposal.  Rather, vehicle depositions were largely results of suicides 

(71.4%, 5/7).  Indoor deaths were primarily natural deaths, although other scenarios were 

represented.  This implied that an enclosed deposition resulted when the body remained 
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in situ after death.  Collectively, vehicle depositions may be indicative of suicide, while 

indoor depositions are likely to result from natural or accidental deaths.  Aquatic, 

vehicular and indoor depositions were also characterized by shorter PMI, the longest one 

being 66 days.  Shorter PMI were thus associated with non-homicidal manners of death 

and no disposal of the body.  

Within the enclosed context, the two cases discovered in hotel rooms represented 

the only cases that were indoor but were not within a home or vehicle.  Although 

inferences on Cases 17 and 18 must remain limited, there was a trend in contextual 

identity between the two men.  The information pointed to two men who were both living 

somewhat lonely lifestyles, who were far away from their homes, and who had a history 

of drugs and a doleful disposition at the times of their deaths.   

By incorporating a model that considered epidemiological and demographic 

factors (Kimmerle and Baraybar 2008), this study revealed demographic information 

about who it was who died alone and remained undiscovered for variable amounts of 

time.  Further, it allowed for linkages to be made between victim collective identity, 

perimortem circumstances and the postmortem interval.  Investigation of decedents’ 

demographic profiles, manners of death and PMI among various contexts showed that 

where a body was found was reflective of the nature of a victim’s demise (Morten and 

Lord 2002) and contributed towards the time frame of which they remained 

undiscovered.  Specifically, outdoor near-surface and subsurface settings were indicative 

of homicide; vehicle contexts were suggestive of suicides; indoor environments were 

indicative of natural and accidental deaths; and aquatic depositions were suggestive of 
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accidental deaths.  These results reflected trends in how collective identity and context of 

deposition was linked to human behavior surrounding the death event, which in turn 

affected each victim’s PMI.  While not directly comparable, these results complemented 

the trends in identity, depositional context and behavior discussed by Morten and Lord 

(2002) and Kimmerle et al., where “(t)he contextual and environmental factors need to be 

part of the case profile (2009:185).” 

The small sample sizes make it unclear as to whether or not these trends are 

generalizable beyond the idiosyncratic scenarios presented here.  Yet the data imply that 

a body’s depositional context is reflective of events surrounding the death and also sets 

the parameters for taphonomic changes (Morten and Lord 2002).  Inclusion of 

epidemiological factors in death investigation is valuable for identifying behavioral and 

demographic patterns indicative of those whose lives and deaths have become 

disconnected from society (Kimmerle and Baraybar 2008; Kimmerle et al. 2009).  When 

a body is discovered, consideration should be given to the depositional context in 

conjunction with the victim’s identity to provide investigative leads for reconstruction of 

perimortem events. 

 

Taphonomy, the Postmortem Interval and ADD 

Previous research has shown that the location of deposition determines the 

environmental variables introduced and sets the parameters for the rate of decay 

(Galloway 1997; Galloway et al. 1989; Komar 1998; Mann et al. 1991; Morten and Lord 

2002; Rodriguez and Bass 1985; Roksandic 2002; Voss et al. 2008).  The multiple 
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variables involved in decomposition are determined by the environmental and cultural 

components that are present when a body is deposited (Grupe 2007; Lyman 1994).  In 

any given environmental context, these variables impact one another so that 

generalizations are difficult to make among different settings (Mann et al. 1990; Lyman 

1994; Sorg and Haglund 2002).  Further, the PMI and ADD ranges for each stage were 

large and overlapping, indicating that there were many confounding factors being 

conflated together.  For example, in Figure 4.16, the mean PMI for dry cases only 

displayed up to 500 days, but the actual mean PMI for dry cases was 1,378.25 days.  In 

contrast, the mean PMI days for advanced cases was only 20.42 days.  The mean PMI 

days demonstrate the large discrepancy in time intervals among stages of decay.  

Therefore, while Bass’ model did accounted for 80.1% of the variation when all contexts 

were combined, separate analyses were conducted for each context as a way to partially 

control for the environment. 

  

Near-Surface Depositions 

Bass’ (1997) model was created based on bodies that underwent decay in wooded 

outdoor surface environments.  The context used for his model was most consistent with 

the outdoor near-surface context of this thesis.  Therefore, it was expected that the near-

surface subset’s postmortem intervals would most accurately fit within the time frames 

associated with each level of decomposition in Bass’ model.  Despite the climatological 

disparity between Nebraska and Tennessee, the near-surface sample’s stages of decay 

were found to be remarkably consistent with Bass’ predicted time frames for each stage 



 

 

    196 

of decomposition.  Although the sample with known PMI was small (7/7), these results 

suggested that Bass’ model might yield accurate results if it were to be applied in the 

Midwest. 

Additionally, the extrinsic variables associated with decay in Nebraska’s outdoor 

near-surface environment closely modeled those described by Bass (1997) for Tennessee.  

Bass (1997) attributed most of the soft tissue removal of surface deposited carcasses to 

insect activity, and 75.0% (6/8) of the Nebraska cases had been colonized by insects.  

These results are consistent with the findings from Rodriguez and Bass (1983) and Bass 

(1997), where insect activity will greatly contribute to the rate of decay in an outdoor 

surface setting.  Canine and other animal scavenging also played a role in the destruction 

of soft tissue for 37.5% (3/8) of the near-surface remains.  Canine scavenging was 

identified through tooth markings and disarticulation of the remains that were consistent 

with the literature (Haglund 1997a, b).  The contribution of canine scavenging towards 

decay was consistent with Komar’s (1997) findings for decomposition within Canada.  

The small sample size for outdoor near-surface depositions precludes anything beyond 

general description.  However, the descriptive data showed that the rate of decay and the 

identified environmental factors were consistent with the literature for decomposition in 

outdoor surface environments.  

While the timing of intrinsic changes could not be quantified for this context, 

taphonomic effects were described in conjunction with the PMI time rages used by Bass 

(1997) so that future research can continue to build on identifying when the intrinsic 

factors for this environment actually occur.  Based on the frequencies of which individual 
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taphonomic effects were identified during each time frame, skin slippage, marbling, 

mummified skin, odor, blood clots, liquefied brain tissue, and examinable organs could 

be good predictors of the first month time range for the postmortem interval.  Soil stain 

was the only taphonomic effect that is unique to postmortem intervals longer than one 

month within this sample.  The degree of skeletonization was seen to progress with 

extended PMI time ranges.  These frequencies indicated that the degree of skeletonization 

could be a good indicator of the postmortem interval.  Although this sample was far too 

small to make robust generalizations, the frequencies did provide some evidence for 

intrinsic effects that might predict PMI.  Description of the intrinsic effects also yielded 

some information on the time ranges for when certain taphonomic effects should manifest 

themselves on a set of remains in an outdoor near-surface Midwest environment. 

 

Subsurface Depositions 

While there were only two subsurface cases, both cases exemplified the many 

intrinsic, extrinsic and epidemiological factors that can confound estimation of PMI when 

a single case is investigated.  The first case (Case 9) demonstrated a pattern that was 

compatible with a decelerated rate of decay, while the second case (Case 10) 

demonstrated trends that were consistent with a surface deposition due to the shallow 

nature of the grave.   

The first case (Case 9) was that of a small juvenile.  This case represented what 

might be encountered when a small body decomposes underground during the winter.  

This case was in the bloated stage of decomposition and had a postmortem interval of 
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approximately three months.  Her postmortem interval was much longer that what would 

be expected for a surface-deposited body in a bloated stage of decay.  The rate of decay 

was consistent with Rodriguez and Bass’ (1985) study of subsurface decomposition.  

Subsurface burials tend to progress towards skeletonization at a slower rate than other 

contexts because the soil tends to hold the temperature stable and prevent outside 

environmental factors such as fly larvae from reaching the remains (Rodriguez and Bass 

1985).   

In addition to burial, there were several other factors identified that could account 

for this decelerated rate of decay.  The child’s body was wrapped in a blanket 

“container.”  Like clothing, a blanket could have acted as a barrier to the body and 

decelerated the rate of decay (Galloway 1997; Galloway et al. 1989; Komar 1998; 

Manhein 1997; Mann et al. 1990).  The body was covered in adipocere.  Where present, 

adipocere could have preserved the remains and slowed the pace of decay (Perper 2006).  

The small body size and differential proportions of body tissues such as adipose and 

skeletal tissue may also have contributed to the decelerated rate of decomposition.  

Lastly, the body decomposed during the winter months, so that the ADD were low.  

Research on temperature and decomposition show that low temperatures held constant by 

burial in soil could have resulted in a slower rate of decay than what might be expected 

for Case 9 (Clark et al. 1997; Gill-King 1997; Manhein 1997; Megyesi et al. 2005; 

Perper 2006; Rodriguez and Bass 1985).  This case study exemplifies the interaction 

among intrinsic, extrinsic and epidemiological factors inherent to estimating the 

postmortem interval.  To accurately predict the PMI for this case, an anthropological 
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model would need to be constructed that accounted not only for temperature, but also 

body size and barriers to the body.   

The second case (Case 10) was the adult male who was found in a shallow 

subsurface grave and had an estimated PMI of “years.”  The state of the remains and the 

taphonomic influences that were present indicated that this case experienced similar 

environmental pressures that a body would encounter on the soil surface.  This was likely 

due to the shallow depth of the grave (Rodriguez and Bass 1983).  The shallow nature of 

the grave indicates that the body was not well protected from environmental factors, and 

may have been almost equally susceptible to outdoor environmental influences as a 

surface deposition (Rodriguez and Bass 1985).   

Roots had grown back through the grave, which Rodriguez (1997) estimates to 

occur after the ground remains undisturbed for approximately a year.  However, roots 

tend to grow back more quickly in shallow graves because there were fewer disturbances 

to the roots when the grave was dug (Rodriguez 1997; Rodriguez and Bass 1985).  Being 

that the grave had existed for years before discovery, plant growth would have had time 

to reoccupy the area and could have accelerated the rate of decay for Case 10.   

It is likely that the temperatures and temperature fluctuations that this body 

encountered were similar to the surface temperatures for the same area (Rodriguez 1997; 

Rodriguez and Bass 1985).  Rodriguez and Bass (1985) found that flies could gain access 

to remains that were buried one foot subsurface.  Further, bodies buried one foot 

subsurface emit odors from the soil that attract flies (Rodriguez 1997).  The deepest 

portion of Case 10’s grave put nine inches of soil above the body.  The shallow burial of 
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Case 10 must have adequately communicated decompositional odors to the ambient 

environment that attracted canine and insect scavengers.  This can be inferred by the 

degree of insect interaction and canine scavenging that the body was subjected to.  The 

presence of pupae casings and scavenger gnaw marks indicate that this partially exposed 

body was vulnerable to external forces that influence the rate of decay.   

In addition to the identified environmental influences, the taphonomic state of the 

remains was consistent with Bass’ (1997) description of surface deposited human 

remains in the dry phase.  Bass describes that dry surface remains may possess bleaching 

and green staining from plant algae in the surrounding environment.  The exposed bones 

from Case 10 exhibited both bleaching and green discoloration.  Therefore, Case 10 

represented a shallow subsurface deposition that was both compatible with the 

taphonomic effects described by Bass (1997) in regards to the dry, skeletonized surface 

remains as well as Rodriguez and Bass’ (1985) superficial subsurface remains.  To 

estimate the PMI for Case 10, one would need to account for the degree that soil depth 

acted as an insulator and barrier to the body.   

Although there were not enough subsurface cases to quantify the relationship 

between extrinsic factors and taphonomic changes, Cases 9 and 10 exemplified the many 

variables that should be considered as influential to the rate of decay during a death 

investigation.  Additionally, discussion of the scenarios presented in the aforementioned 

cases demonstrates the problematic application of previous research towards the 

estimation of PMI.  Studies that were discussed here are descriptive in nature and did not 

easily lend themselves towards an estimation of PMI for these cases.  
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Aquatic Depositions 

The first case (Case 11) was in the fresh stage of decay and the second case (Case 

12) was in the bloated stage.  The third case (Case 13) had a postmortem interval of 2.5 

months and was also in the bloated stage of decomposition.  This last case was consistent 

with a decelerated rate of decay for aquatic environments (Rodriguez 1997).   

The first case (Case 11) was fresh and had a PMI of one day, which is consistent 

with Bass’ (1997) predictive model for outdoor surface remains.  However, a PMI of one 

day does not provide much time to accrue decompositional changes.  This case study was 

not very informative of taphonomic changes for aquatic environments.  The second case 

(Case 12) had a PMI of two days and was within the bloated stage of decay, which is also 

consistent with Bass’ model.  Several of this case’s taphonomic effects were also 

consistent with Bass’ (1997) depiction of decomposition within the first week, namely: 

bloating, marbling, skin slippage, and the release of body fluids (assumed to be part of 

the decompositional gases that were noted around the body).  The rapid onset of bloating 

may be due to the short postmortem interval during warm summer temperatures.  

However, there was not much information on Case 12 outside of the state of the remains.  

Also, a PMI of only one and two days do not provide much information on the variability 

of decay.  Thus, Cases 11 and 12 were not very informative on taphonomic changes 

associated with aquatic Midwest environments.  

The third case (Case 13) was a bloated corpse with an extended PMI of 

approximately two months.  For this extended postmortem interval, Bass’ (1997) model 

would predict an advanced level of decay.  Yet the corpse was substantially well 
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preserved for what might be expected of a surface deposition during the summer.  The 

decelerated rate of decay described here is consistent with the literature for bodies 

decomposing in aquatic environments (Haglund and Sorg 2002b; Rodriguez 1997; Spitz 

2006).  It is also possible that clothing may have acted as a barrier to the body and 

retarded the decomposition of the body (Galloway 1997; Galloway et al. 1989; Komar 

1998; Mann et al. 1990).  This case (Case 13) was found to be fully clothed, whereas the 

other two cases were only mostly (50.0-75.0%) or moderately (<50.0%) clothed.  

However, clothing could have also contributed to an accelerated loss of soft tissue within 

this aquatic environment (Haglund 1993).   

The descriptions of the cadavers found in aquatic environments suggest that they 

do resemble the intrinsic decomposition changes described by Bass (1997) for 

decomposition on ground surface.  However, the small sample size and the narrow range 

of variability in decomposition for this sample make it difficult to make meaningful 

inferences on rates of decay and the PMI for aquatic locations.  Additionally, the aquatic 

cases lacked information on the ambient environment and the position of the remains 

when discovered, which could have greatly improved the quality of this analysis.    

 

Enclosed Depositions 

Relationships between PMI, ADD and Decay Rate 

 The relationship between time, temperature and rate of decay have already been 

well established (i.e. Bass 1997; Clark et al. 1997; Galloway 1997; Galloway et al. 1989; 

Gill-King 1997; Higley and Haskell 2001; Haskell 2006; Komar 1997; Love and Marks 
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2001; Manhein 1997; Mann et al. 1990; Megyesi et al. 2005; Perper 2006; Rodriguez and 

Bass 1985; Vass 2001; Vass et al. 1992; Voss et al. 2008).  Yet these relationships 

needed to be demonstrated using the thesis data to test whether: the retrospective data 

possessed variability in all three factors and were appropriate for taphonomic analysis, 

PMI and ADD are appropriate measures for the rate of decay, and decomposition rates 

for indoor Nebraska follow a different timeline than outdoor Tennessee.   

Results showed that PMI and ADD shared a relationship with stages of decay, and 

that there were significant differences in PMI and ADD by stage of decay.  Additionally, 

Bass’ (1997) model for summer outdoor decay in Tennessee adequately accounted for the 

variation in decomposition among the Nebraskan sample.  These relationships showed 

that the sample possessed variation in decomposition and was adequate for investigation 

of decay.  Therefore, meaningful research on decomposition can and should be conducted 

with retrospective data. 

These aforementioned results set the rational for performing odds ratios on 

individual taphonomic effects.  Bass’ (1997) stages of decay are composed of 

taphonomic indicators, which appear and disappear over time.  The odds ratios 

demonstrated that marbling, bloating, green discoloration, mummification and brain 

liquefaction were all more likely to be present after the first week of the postmortem 

interval.  Bass’ (1997) model for outdoor surface decomposition places the presence of 

bloating and marbling within the first week of decay.  While the indoor Nebraska and 

outdoor Tennessee results are not wholly incompatible, they do suggest a decelerated rate 

of early postmortem changes for remains located indoors.  This decelerated rate of 
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taphonomic change is consistent with the findings of Galloway and colleagues (1989), 

where bodies deposited in closed structures decayed more slowly during the initial phases 

of decomposition.  Therefore, the results from the odds ratios implied variability in decay 

rates between indoor and outdoor environments, and were valuable in understanding 

when these taphonomic effects actually occurred for indoor depositions. 

 It was not known why Bass’ (1997) model was reliable when applied to the 

indoor sample.  The relationship between decay rates of outdoor Tennessee and indoor 

Nebraska could exist because indoor temperatures are often controlled and are more 

uniform so that there are rarely extreme temperature fluctuations.  Therefore, it is 

plausible that cadavers within houses decomposed at comparable rates to those outdoor 

summer cases in Tennessee because of indoor control over temperature.  However, this 

explanation could not be empirically verified for these data.  Also, it should be noted that 

these results do not imply that the Tennessee model for estimation of the postmortem 

interval is widely applicable across the world.  The indoor environment introduces a 

control for temperature that cannot be extended to other environments, particularly where 

there are extreme seasonal and daily temperature fluctuations.  It is likely that the time 

ranges given by Bass would not be appropriate for cases of decomposition from other 

environments. 

Temperature is the most important factor in the rate of decay (Clark et al. 1997; 

Gill-King 1997; Manhein 1997; Mann et al. 1990; Perper 2006).  The results of this study 

corroborated the utility of accumulated degree days as a more appropriate measure for 

decompositional rate than time alone (Love and Marks 2001; Megyesi et al. 2005; Vass 
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et al. 1992).  The incorporation of temperature with time also makes ADD more 

universally relevant for predicting the postmortem interval.  Temperature accumulation 

over time sets the tempo for decomposition.  Therefore, future decomposition research 

should attempt to predict the accumulated degree days in replacement of or in addition to 

the postmortem interval. 

 

Nonessential Variables Identified 

 It was of interest to identify what variables were related to the rate of decay.  

Several of the variables investigated failed to demonstrate a significant relationship with 

PMI or ADD.  The intrinsic variables that did not reveal a relationship included: 

estimated BMI, age, stature, lividity, fluid stain, and the whether the organs were 

examinable.  Burial factors that showed no relationship to rate of decay included: 

presence of a container, room of deposition within the home and the type of surface 

where the body was deposited.  While many of these variables are commonly thought to 

influence the rate of decomposition, this relationship was not reflected in the analysis.   

Age, stature, and estimated BMI did not show a relationship with PMI or ADD, 

although stature was correlated with the transformed Y (LogADD).  Therefore, these 

intrinsic characteristics demonstrated no relationship to the rate of decay.  Although livor 

mortis is characteristic of the early postmortem period (Clark et al. 1997; Perper 2006), 

the predictive power of lividity on ADD was never tested.  This variable was eliminated 

due to its high prevalence among all stages of decay, which was interpreted as an error in 

data collection.  Although fluid stain and examinable organs did not correlate with ADD, 
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their relationship to decay has been well established within the literature (Bass 1997; 

Clark et al. 1997; Gill-King 1997; Perper 2006).  While they are known results of 

decomposition, the analysis revealed that they were not the best predictors for the rate of 

decay.  

The presence of a container and the surface of deposition have also previously 

been implicated as influential on the rate of decay (Mann et al. 1990).  While this thesis 

did not identify these variables as influential, it is possible that limitations inherent to 

retrospective data skewed their relationships to PMI and ADD.  For the surface of 

deposition, the specific material could not be discerned from the police and autopsy 

reports.  In addition, there were two bodies that were still fresh after the first day of 

decomposition and both had decomposed on synthetic surfaces, such as carpet, bedding 

and a car seat.  Although it is possible that these surfaces affected the rate of decay, there 

was not enough information to provide evidence for the trend specified in the literature 

(Mann et al. 1990).  

For containers, the relationship may have been altered by the classification of 

vehicles as containers.  Vehicles were not categorized separately because the sample 

sizes for containers and vehicles were too small to identify trends.  Whereas containers 

are thought to slow the rate of decay, vehicle depositions are believed to experience an 

accelerated rate of decay due to the higher temperatures (Haskell 2006:170; Voss et al. 

2008).  This trend was supported by the data, where all three advanced cases that were 

only within their first week of decomposition were also located within vehicle containers.  

This suggested that vehicle deposition greatly accelerated the rate of human decay, which 
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is consistent with the Voss et al. (2008) findings.  Thus, the relationship between 

containers and the rate of decomposition may have been altered by the inclusion of 

vehicles as containers.   

While clothing was not considered a surface or a container, clothing has also been 

implicated as a barrier that decelerates the rate of decay (Galloway 1997; Galloway et al. 

1989; Komar 1998; Mann et al. 1990).  However, that relationship was neither 

established nor invalidated here.  The percentage of body surface covered by clothing 

was not significantly correlated with PMI or ADD but was correlated with the LogADD.  

The results from this study only showed that the surface of deposition and containers 

were not useful predictors for ADD.  It was not possible to more thoroughly investigate 

the roles of containers, surfaces and clothing within this study.  Future experimental 

research should focus on these variables.   

 

Important Variables Identified 

Table 5.1 lists all the variables that were identified as being important in the 

analysis of decomposition within enclosed environments.  Marbling, mummified skin, the 

presence of decomposition odor, brain liquefaction and the use of air conditioning or heat 

were all selected for the predictive regression model.  Therefore, these variables were 

identified as being the most important factors for prediction of decay within enclosed 

environments.  All variables that were selected for the model showed significant 

correlations with the raw variable ADD.  Although ADD were transformed to the 
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LogADD for the purpose of creating a predictive model, the transformation of the Y did 

not detract from the important information gained from this analysis.    

It was of interest to identify environmental factors that influence the velocity of 

decay within enclosed environments.  The use of AC/heat was one of two variables that 

accounted for the most variation within the model.  While the use of AC/heat was not 

correlated with the transformed y (LogADD), it was significantly correlated with the 

untransformed y (ADD).  Thus, it was considered and then selected for the model.  

Ultimately, this variable accounted for a significant portion of the variation within the 

model (t=5.659, p=0.002).  The use of air conditioning and heat probably accounted for 

some of the disparity between indoor and outdoor temperatures, since outside 

temperatures were used to create the ADD.  Although the seasons during decomposition 

were not selected for the model, they were significantly correlated with ADD and its 

transformation.  Additionally, the results from the odds ratio demonstrated that 

decomposition is 1.5 times more likely to occur in the spring and summer than in the fall 

and winter.  This was consistent with trends in the literature, where decay rates were 

accelerated in the summer in comparison to the winter (Bass 1997; Galloway 1997; 

Galloway et al. 1989; Komar 1997; Rodriguez and Bass 1983).   

The odds ratio result also alluded to the problem with only predicting time, when 

temperature and moisture greatly affect the rate of decay (Mann et al. 1990).  The greater 

likelihood of decomposition in the spring and summer also implied that climate affects 

the rate of decay within enclosed environments.  Since seasons capture temporal variation 

of temperature into one variable (Bass 1997; Galloway et al. 1989; Galloway 1997; 
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Komar 1997), seasons could be used to strengthen the relationship between taphonomic 

factors and ADD.  Seasons were an easy and practical way to approximate temperature 

during the PMI and should continue to be considered for future models. 

Bass’ (1997) stages heavily emphasize the actions of insects in soft tissue removal 

for outdoor decomposition.  Since enclosed environments present more barriers for 

access to indoor remains, there is confusion as to whether insects greatly contribute 

towards indoor decay (Goff 1991; Haskell 2006; Schroeder et al. 2002).  Similarly, while 

rare cases of animal scavenging within enclosed environments have been documented 

(Galloway et al. 1989; Perper 2006; Steadman and Worne 2007), their contribution 

towards decomposition has not previously been quantified.   

The results indicated that animal scavenging did not greatly contribute toward 

indoor decomposition, as there was only one case of canine scavenging.  Flies were the 

most prevalent necrophages, while beetles were not represented.  These results supported 

the findings by Goff (1991), where the diversity of colonizing insect species is restricted 

within enclosed environments.  Although Voss et al. (2008) witnessed a delayed insect 

colonization on bodies within vehicles, only 33.3% of remains in vehicles showed 

evidence of fly activity.  Collectively, the presence of necrophagous activity shared a 

relationship with PMI, ADD and the LogADD and was originally selected for the model.  

It was manually removed because when it was included the models produced had a much 

lower adjusted R².  Although necrophagous activity was limited in this sample, it clearly 

held an important relationship with the rate of decay, which is consistent with previous 

research (Rodriguez and Bass 1983; Mann et al. 1990; Bass 1997). 
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 Based on these findings, necrophagous activities significantly influence the rate of 

decay when present, but animals and insects frequently cannot access enclosed remains.  

While it is possible that necrophagous activity (particularly beetles) was underreported in 

this sample, the persistence of bloating and the delayed onset of skeletonization may 

potentially result from the lack of necrophagous activity within enclosed settings.  The 

frequency of indoor decomposition and the minimal role of necrophagous activity on 

enclosed remains underlined the need to generate context-specific standards for PMI 

estimation within enclosed environments.   

 The intrinsic characteristics selected for the predictive model were: 

decomposition odor, marbling, mummification of skin and liquefaction of the brain.  

Although correlations were identified among some of the taphonomic effects, 

multicollinearity was inherent to the nature of the data and the research question that was 

being investigated.  Autolysis and putrefaction were at the root cause for most of the 

taphonomic effects that displayed multicollinearity and therefore correlations among 

them were unavoidable.   

 The presence of decomposition odors accounted for the most variation within the 

model.  Since the brain has a high concentration of hydrolytic enzymes, brain 

liquefaction occurs rather quickly after death and represents an earlier postmortem 

change (Gill-King 1997:97).  The release of odors and the discoloration of blood vessels 

are both putrefactive changes that occur early to intermediate in the decomposition 

process (Bass 1997; Clark et al. 1997; Gill-King 1997).  Mummification is less likely to 

occur on indoor remains (Galloway 1997).  When it does occur, it is a late taphonomic 
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development in decomposition for enclosed settings (Galloway et al. 1983).  Although 

these variables overlapped at times, the regression model has incorporated taphonomic 

changes that spanned across the spectrum of time and ADD represented by the data.  

Therefore, not only did this combination of variables account for the most variation, there 

is also a theoretical relationship to support the use of these variables for predicting the 

rate of decomposition.      

There is still some question as to how important size is in prediction of ADD or 

rate of decay.  Body size should be further investigated for relationships with taphonomic 

change, since body mass is lost during the decomposition process (Bass 1997; Galloway 

et al. 1989; Komar 1997; Rodriguez and Bass 1983; Roksandic 2002).  In this study, 

estimated weight and BMI were not normal and transformations were unsuccessful so 

their predictive power for the rate of decay could not be explored.  Yet the correlations 

for estimated weight with ADD and the LogADD implied that weight shares a 

relationship with the rate of decay.  Future research is needed to empirically validate and 

quantify the relationship between body mass lost to decomposition and the PMI. 

All the variables listed in 5.1 shared a relationship with the rate of decay, but to 

varying degrees.  The variables selected for the model in the stepwise regression were 

implicated as the most important variables for decomposition within enclosed settings.  

Weight and the percent of the body covered by clothing merit further investigation to 

establish their relationships with taphonomic change.  All other variables demonstrated a 

relationship with ADD that supports their consideration for future research.  These 

variables are not new to decomposition research.  Yet what is valuable in this thesis is 
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that they were employed in a statistical model that not only predicts the rate of decay, but 

also produces a quantification of the standard error.  Therefore, this model is a response 

to the growing concerns for sound research practices (National Research Council 2009) 

and will withstand the rigors of the judicial system by meeting the need for accuracy and 

validity of estimates (Christensen 2004; Christensen and Crowder 2009;  Kimmerle and 

Jantz 2008; Ross and Kimmerle 2009). 
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Table 5.1—Important Variables for Predicting ADD. 
Intrinsic • Brain liquefaction* 

• Decomposition odors** 
• Marbling** 
• Mummified skin* 
• Weight 
• Rigor 
• Skin Slippage 
• Bloating 
• Green Discoloration 

 
Extrinsic • Seasons 

• Insect access 
• Necrophagous activity 

 
Epidemiological • Use of AC or heat** 

• % of body covered by clothing 
* Represents variables selected as significant for the multiple linear regression model.  Everything else was 
excluded.   
** Represents variables that independently accounted for a significant portion of the variation in the 
multiple linear regression model. 
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Recommendations for Best Practice 

Mann and colleagues (1990) assert that temperature is the most important factor 

in decompositional change over time, which has been corroborated by others (Clark et al. 

1997; Gill-King 1997; Perper 2006).  Additionally, Manhein (1997) has identified that 

forensic anthropologists involved in casework across the United States believe there is a 

need to improve the recording of climate for decomposition research.  This thesis 

research and Megyesi et al. (2005) have shown that that local weather stations’ 

climatological data were useful contributions toward the reconstruction of decay rates.  

Additionally, this research provides support for the use of ADD as a measure of 

decompositional change.  For this reason, it is critical that future research focuses both on 

PMI days as well as ADD (Megyesi et al. 2005).  Both should be reported and compared 

so that the published literature can contribute to the understanding of the disparity 

between these two variables.  Additionally, research that reports both the postmortem 

interval and accumulated degree days becomes more pertinent for anthropologists 

engaged in death investigations.  Those who utilize the methods can choose to employ 

the measure that is most applicable to the setting of the remains under examination.  

A study conducted by Megyesi and colleagues (2005) created simple linear 

regression models that predict the log of PMI and the LogADD for bodies that 

decomposed between three to twelve months.  They found that more variation was 

accounted for with the model that predicted the LogADD (2005:623), which supports the 

presentation of both measures as well as the placement of emphasis on predicting 

accumulated temperature rather than time.  The creation of more research that uses ADD 
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as an alternative to but in conjunction with PMI days can make the methods more widely 

applicable and also provide opportunities for others to test them in novel environments. 

The Megyesi et al. (2005) study only used intrinsic taphonomic effects as 

predictive variables, as have other published research (Galloway et al. 1989; Bass 1997; 

Clark et al. 1997; Gill-King 1997).  This thesis also resulted in a model that prioritized 

intrinsic decomposition changes.  It is paramount that future studies incorporate extrinsic 

and burial factors in addition to intrinsic changes into multivariate statistical analyses for 

the prediction of ADD and PMI.  

Epidemiological variables were often found to have high correlations with ADD 

but low correlations with the intrinsic taphonomic effects.  Inclusion of extrinsic and 

epidemiological variables in conjunction with fewer intrinsic variables could help avoid 

issues of multicollinearity.  Further, inclusion of epidemiological and extrinsic variables 

puts more emphasis on the dynamic processes that produce taphonomic effects, an area 

that needs to be further developed (Gifford 1982:493).   

Therefore, if epidemiological factors could be identified and found to correlate 

with PMI or ADD, they could greatly contribute to the construction of a robust predictive 

model.  The use of extrinsic and epidemiological influences in conjunction with 

indicators of decay could produce excellent statistical models for estimating the 

accumulated temperature since death.  This requires further diligent retrospective 

research to identify more variables and further test those listed here for their relationship 

to decompositional changes and ADD.  More testing is also needed for the production of 

known error rates.                           



 

 

    216 

Since the rate of decay is determined by a combination of many factors, future 

research should continue to focus on the creation of predictive models that are 

environmentally specific (Galloway 1997; Galloway et al. 1989; Grupe 2007; Komar 

1998; Lyman 1994; Mann et al. 1990; Megyesi et al. 2005; Rodriguez and Bass 1985; 

Roksandic 2002; Sorg and Haglund 2002; Voss et al. 2008).  The variables listed in 

Table 5.1 should continue to be tested in future research among diverse locations.  This 

list can and should be further investigated and thoroughly revised to reflect the best 

combination of variables for every tested environment.  

More focus on the multitude of factors that affect rates of taphonomic change 

during the postmortem interval can help forensic anthropologists move away from stage 

data and towards robust multivariate analyses.  As Christensen and Crowder note, 

“quantitative data is based upon qualitative judgments, and all qualitative data can be 

described and manipulated numerically (2009:1213-1214).”  Multivariate analyses can 

aid in making theoretical generalizations in taphonomic and by extension forensic 

anthropology research (Lyman 1994), and are more likely to meet the Daubert standard.  

An anthropological framework that considers epidemiological, extrinsic and intrinsic 

factors is well suited to a multivariate approach and embraces the intricate and dynamic 

relationships among the human behaviors associated with a death event, the body, and 

it’s extrinsic and epidemiological surroundings.  In essence, this framework allows the 

anthropologist to contextualize the taphonomic findings within the broader conditions 

that defined a death event.   
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On a more practical note, multivariate models that embrace these three domains 

can avoid issues in multicollinearity, put emphasis on the dynamics of decompositional 

change, and comprehensively address death and decomposition within an anthropological 

framework.  The identification and utilization of variables that are most important in 

affecting the rate of decomposition will produce sound research models that meet the 

criteria for relevance and reliability established in Daubert, Joiner and Kumho (refer to 

Christensen 2004; Christensen and Crowder 2009; Grivas and Komar 2008).  Further 

development of the anthropological model employed in this thesis will move this body of 

research beyond the particularized and descriptive approach and towards more robust 

analyses with meaningful results both to the anthropological and legal communities. 
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Appendix A: Data Collection Protocol 

 

USF FORENSIC ANTHROPOLOGY AND BIOARCHAEOLOGICAL SCIENCES 
LABORATORY (FABAS) 
PROTOCOL FOR DECOMPOSITION RESEARCH 
(Current and Updated Version Located on USF Intranet) 
Last Revised: 14 June 2008  
Citation: BFA Protocol for Decomposition Research of Human Remains in Varied Environments (EH 
Kimmerle. University of South Florida)  

 
 

Research Collaborators: 
Melissa Pope, MA Student, Department of Anthropology 
Nebraska Institute of Forensic Sciences, Inc.  
Introduction: 
Data is collected for individuals who have died in enclosed environments and in outdoor 
environments and who remained there long enough to allow some decompositional 
changes.  
 
DECOMPOSITION RATES (Adapted from Bass 1997:183-184) 
BASED ON CHARACTERISTICS, CHOOSE WHATEVER PHASE BEST 
APPLIES.  
Fresh 

1. Egg masses will be white and may look like fine sawdust. 
2. Veins under the skin may be turning blue or dark green (marbling). 
3. Some body fluids may be seen around the nose and mouth. 

 
Early or Bloated 

1. Maggots have hatched and are active in the face. 
2. Lips may be distended because of the maggot mass under the skin.  
3. Skin around the eyes and nose is eaten away exposing bone 
4. Beatles appear as a part of the sequence of carrion insect activity. 
5. Skin slippage on the body is beginning. 
6. Hair is beginning to slip from scalp. 
7. Veins are prominent under the skin and are dark blue or dark green. 
8. The odor of decay is present. 
9. Body fluids may be flowing from the nose, mouth, and rectum. 
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Appendix A: (Continued) 
 

10. Abdominal areas may be bloated. 
11. Molds of various colors begin to appear on the body. 
12. Mammalian carnivores may be active and will greatly speed up the decrease of 

soft tissue by eating the decaying tissue as well as bone. 
13. Body fluids (volatile fatty acids) may have killed the vegetation immediately 

around the body. 
 

Advanced or Decay 
1. Maggot activity is much less and beetles are present on and around the decaying 

body.  
2. Bloating is past and the body is in the decay phase. 
3. If in the spring, birds may be using hair that has slipped from the scalp to build 

nests. 
4. If the body has been covered most of the bones will be exposed where the soft 

tissue has decayed away. 
5. If the body was not covered, the skin between the skeleton and the sunlight will 

be intact to protect the maggots from the sun. It will now be getting dry and 
leathery. If the body lies on its back the dry skin will be holding the ribs together.  

6. Mammalian carnivores may be carrying off limb and even the skull. 
7. Molds (of various colors) have spread over the soft tissue and on the ones. The 

area around the body may be stained dark and the body may appear to have been 
burned. This is from the volatile fatty acids that have leached out of the body 
during the decay process. 

8. If the body decayed on an incline, these volatile fatty acids will kill the vegetation 
as it flows from the body. 

9. Adipocere may appear on a body decaying in a moist environment. If in the water, 
the adipocere will first be seen in the area from about 2 inches above to 2 inches 
below the water line. 
 

Dry; Mummified or Skeletonized 
1. Bleaching of the skeleton has occurred from the sunlight. 
2. The portions of the skeleton in the shade may have moss or green algae growing 

on them. 
3. Rodent gnawing may be present along the crest or edges of bones (the eye orbits 

in the skull, the linea aspera of the femur, etc.). 
4. Mice may be using the skull as a nest. 
5. Wasps may build a nest in the skull if the skull was dry by late March or early 

April during the nest-building period. 
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Appendix A: (Continued) 
 

BONE WEATHERING STAGES (from Buikstra and Ubelaker 1994:98) 
(For remains that are skeletonized) Choose the stage that best describes the remains. 
Stage 0: Bone surface shows no signs of cracking of flaking due to weathering. 
Stage 1: Bone shows cracking, normally parallel to the fiber structure (e.g., longitudinal 
in long bones). Articular surfaces may show mosaic cracking.  
Stage 2: Outermost concentric thin layers of bone show flaking, usually associated with 
cracks, in that the bone edges along the cracks tend to separate and flake first. Long thin 
flakes, with one or more sides still attached to the bone, are common in the initial part of 
Stage 2. Deeper and more extensive flaking follows, until most of the outermost bone is 
gone. Crack edges are usually angular in cross section. 
Stage 3: Bone surface is characterized by patches of rough, homogeneously weathered 
compact bone, resulting in fibrous texture. In these patches, all the external, concentric 
layers of bone have been removed. Gradually the patches extend to cover the entire bone 
surface. Weathering does not penetrate deeper than 1.0-1.5mm at this stage, and bone 
fibers are still firmly attached to each other. Crack edges usually are rounded in cross 
section. 
Stage 4: The bone surface is coarsely fibrous and rough in texture; large and small 
splinters occur and may be loose enough to fall away from the bone if it is moved. 
Weathering penetrates into inner cavities. Cracks are open and have splintered or rounded 
edges. 
Stage 5: Bone is falling apart, with large splinters. Bone easily broken by moving. 
Original bone shape may be difficult to determine. Cancellous bone usually exposed, 
when present, and may outlast all races of the former more compact, outer parts of the 
bones. 
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Appendix A: (Continued) 
 

DATE AND RECORDER: 
POLICE AGENCY: 
POLICE REPORT NO.: 
AUTOPSY NO.: 
DATE OF INCIDENT (specify time range): 
DATE FOUND: 
DATE/YEAR OF POLICE REPORT: 
 
DEMOGRAPHIC INFORMATION OF DECEDENT: 
 
OBS. 01: Sex 1=Male 2=Female  
 
OBS. 02: Age (years) 
 
OBS. 03: Ancestry: 
 1=Caucasian   4=Hispanic   6=Other (list) 
 2=African-American  5=American-Indian  99=Unknown 
 3=Asian 
 
OBS. 04: Was the person obese/overweight? 0=no  1=yes 
 99=unknown  
 
DEATH EVENT: 
OBS. 05: Manner of death 
 1=Homicide 
 2=Suicide 
 3=Accident 
 4=Natural 
 5=Undetermined 
 
OBS. 06: Cause of death (list): 
 
OBS. 07: Is the time of death known?  0=no  1=Yes 
 99=Unknown 
 
OBS. 08: What date and time did the person die or when was the person last 
known/seen to be alive? (specify, add any pertinent details) 
 
OBS. 09: When was the body found/recovered? (list date and time if possible) 
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Appendix A: (Continued) 
 
OBS. 10: Who found the body? 
 0=friend  1=spouse  2=neighbor  3=police
 4=stranger  5=other (list)  99=unknown 
 
OBS. 11: What is the location of where the person died and where the body was 
found (Provide address if possible. At-least provide city). 
 
PERIMORTEM INJURY 
OBS. 12: Were there injuries on the body? 0=No  1=Yes 
 99=Unknown 
 
OBS. 13: If yes, approximately how many? (list)  
 
OBS. 14: Location of injuries (on body) (list all that apply): 
 1=Head  4=Abdomen   7=Back 
 99=N/A 
 2=Neck  5=Upper Extremity  8=Combination (list) 
 3=Thorax  6=Lower Extremity  9=Other 
 
OBS. 15: Nature of Injury- Mechanism/Cause of Death: 
 1=Single GSW  4=SFT   6=Other (list and describe) 
 2=Multiple GSW  5=Strangulation 7=Unknown 
 99=N/A 
 
OBS. 16: Weapon: 
 1=handgun   5=Blunt (list specific)  99=Unknown/NA 
 2=Shotgun   6=Ligature (list specific)  
 3=Rifle   7=Manual strangulation 
 4=Sharp (list specific)  8=Other (list) 
 
BURIAL FACTORS 
OBS. 17: Context of burial location: 
 1=Outdoor surface location 
 2=Sub-surface Burial (list depth) 
 3=Dismemberment 
 4=Water (list type of body of water, i.e., river, bay) 
 5=Burning/ fire or cremation 
 6=Indoor location 
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Appendix A: (Continued) 
 
OBS. 18: Environment where body was recovered:  
 1=Public space  2=Private residence  3=Along roadside 
 4=Wooded area/field  5=Abandoned structure 6=Railroad tracks 
 7=Other (list):   99=Unknown 
 
OBS. 19: What was the sun exposure where the body was recovered? 
 1=Sunny 2=Shady 3=mixed 99=unknown  
 
OBS. 20: If body was recovered in a home or other indoor environment, what room 
was the body located in? 
 1=basement  2=bedroom  3=bathroom  4=kitchen 
  
 5=living room  6=attic   7=other (list)  99=Unknown 
 
OBS. 21: Container: 
 0=none  1=blanket   2=shower curtain 
 3=carpet  4=trash bin/ dumpster  5=other (list)  
 99=unknown or N/A 
 
OBS. 22: Surface that the body was laying on: 
 1=dirt  2=rocks 3=carpet 4=hardwood floors  5=tile 
 6=linoleum 7=submerged   8=other (list)   
 99=unknown 
 
OBS. 23: Was the victim wearing clothing? 0=No  1=Yes 
 99=Unknown 
 
OBS. 24: What kind of materials did the clothing consist of? (For each type of 
material, note what type of garment it was and what state of preservation it was in). 
 1=cotton  2=synthetic(list if possible)  3=animal (silk or 
wool)  
 4=other(list)  99=unknown 
 
OBS. 25: Approximately how much did the clothing cover the body? 
 1=Minimally covered (less than 25%) 2=Moderately covered (less than 
50%) 3=Mostly covered (50-75%)   4=Fully covered (more than 75%) 
 99=N/A or unknown     
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Appendix A: (Continued) 
 
OBS. 26: What was the position of the body? 

1=ventral surface in contact with floor 2=dorsal surface in contact with 
floor 

 3=lying on the body’s side (laterally)  4=semiflexed or flexed 
 5=other or combination (list and describe) 99=unknown 
 
OBS. 27: How complete are the skeletonized, mummified or scavenged remains? 
 1=≤25% 2=≈50% 3=≥75% 4=≈100% 99=Unknown  
 
SCAVENGING ACTIVITY 
OBS. 28: Was there post-mortem modification to the body? If human, describe. 
 0=No  1=Yes  99=Unknown 
 (This may include animal, insect or human activity).  
 
OBS. 29: Was the body moved following the death event? 0=No 1=Yes
 99=Unknown 
 
OBS. 30: Evidence of scavenger activity?  0=No  1=Yes 
 99=Unknown 
 
OBS. 31: If yes, what type of scavenger? (list all that apply). 
 1=canid  2=feline 3=ant  4=fly  5=roach 
 6=water creatures 7=combination (list)  99=unknown   
 
OBS. 32: If yes, list species, describe pattern and extent of scavenging. (list) 
 
OBS. 33: If insect activity was present, describe what species were present and the 
most advanced stages of development. (list) (Specify the extent of tissue loss due to 
scavenging). 
 
OBS. 34: If larvae were found near the body, where were they found (ie- under 
carpet), and how many rooms had they occupied? (list) (be as specific as possible).  
 
 
DECOMPOSITION STAGE DATA 
OBS. 35: According to the stages outline by Bass (noted above), what stage BEST 
describes the condition of the human remains? 
 1=Fresh   2=Early or Bloated   

3=Advanced or Decay 4=Skeletonized or Only Mummified Tissues 
 5=Bone Breakdown  99=Unknown 
 
OBS. 36: Rigor: 0=Absent  1=Present  99=Unknown or NA 
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Appendix A: (Continued) 
 
OBS. 37: Lividity: 0=Absent  1=Present  99=Unknown or NA 
 
OBS.38: Skin Slippage: 
   0=Absent  1=Present  99=Unknown or NA 
OBS.39: Postmortem Bullae: 
   0=Absent  1=Present  99=Unknown or NA 
 
OBS.40: Marbling: 0=Absent  1=Present  99=Unknown or NA 
 
OBS.41: Bloating: 0=Absent  1=Present  99=Unknown or NA 
 
OBS. 42: Green Discoloration: 
   0=Absent  1=Present  99=Unknown or NA 
 
OBS.43: Purge fluid (from mouth of nose): 
   0=Absent  1=Present  99=Unknown or NA 
 
OBS.44: Mummified Skin:  
   0=Absent  1=Present  99=Unknown or NA 
 
OBS.45: Adipocere: 0=Absent  1=Present  99=Unknown or NA 
 
OBS.46: Decomposition Smell: 
   0=Absent  1=Present  99=Unknown or NA 
 
OBS.47: Mold growth on the body: 
   0=Absent  1=Present  99=Unknown or NA 
 
OBS.48: Postmortem blood clotting: 
   0=Absent  1=Present  99=Unknown or NA 
 
OBS.49: Skeletonization: 
 0=None 1=≤25% 2=≈50% 3=≥75% 4=≈100% 
 
OBS. 50: For skeletonized remains, what taphonomic stage best describes the 
remains? 
 Stage 0   Stage 1   Stage 2   Stage 3   

Stage 4   Stage 5   99=N/A 
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Appendix A: (Continued) 
 

OBS.51: If any portions of the body are skeletonized or mummified, list/describe 
what portions of the body. If skeletonized, describe presence/absence of soft tissue 
(ligaments). 
 
TEMPERATURE DATA: 
OBS. 52: Was the temperature at the time of death known? (LIST; be as specific as 
possible)  0=no  1=yes   
 
OBS. 53: If NO, then what was the average, high, and low temperatures for that 
particular day? (Area specific: may have to go back to this with local weather data). 
 
 
OBS. 54: What was the forecast when discovered (if known)? (Describe)  
1=Sunny    2=Cloudy  3=Rainy 4=Snow/freeze 
5=Shaded   6=Enclosed  99=Unknown 
 
OBS. 55: List the date of last seen/death event (specify) and the date of discovery, 
and the interval. 
 
OBS. 56: What seasons have occurred from the time of death to when the body was 
discovered? 

1=Summer   2=Fall   3=Winter 4=Spring 
 5=Combination (list)  99=Unknown  
 
OBS. 57: If the body was found in a sheltered or protected environment, what were 
some factors that may have modified the body’s exposure to outdoor 
temperature/exposure? (list anything mentioned in the report) 
 
INDOOR FACTORS (If the body was found in a sheltered environment): 
OBS. 58:  Were the windows closed?  0=No  1=Yes 
 99=Unknown 
 
OBS. 59: Was the AC/Heat turned on? (specify heat or AC)   
0=No  1=Yes  99=Unknown 
 
OBS. 60: If YES, at what temperature was the thermostat set? (if they had a 
thermostat; list) 
 
OBS. 61: If YES, what type of device was used? 
 1=central heat and air  2=window unit AC  3=electrical heater 
 4=other (specify)  99=Unknown 
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Appendix A: (Continued) 
 
OBS. 62: If known, what temperature was the indoor environment when the body 
was found? (List) (Actual temperature and thermostat setting may be different). 
  
 
OBS. 63: Were there any barriers blocking the skin from air exposure (i.e., 
blankets)? If Yes, List/Describe. 

0=No  1=Yes  99=Unknown 
 

OBS. 64: Comments (circumstances, description of the body and/or scene, what 
information was used to establish time since death, any other factors from reports 
that may be important). 
 
 
 


	Differential Decomposition Patterns Of Human Remains In Variable Environments Of The Midwest
	Scholar Commons Citation

	Microsoft Word - AS_Master's_Title_Page.doc

